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SUMMARY
Weenvision ‘‘AI scientists’’ as systems capable of skeptical learning and reasoning that empower biomedical
research through collaborative agents that integrate AI models and biomedical tools with experimental plat-
forms. Rather than taking humans out of the discovery process, biomedical AI agents combine human crea-
tivity and expertise with AI’s ability to analyze large datasets, navigate hypothesis spaces, and execute
repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and per-
forming self-assessment to identify and mitigate gaps in their knowledge. These agents use large language
models and generative models to feature structuredmemory for continual learning and use machine learning
tools to incorporate scientific knowledge, biological principles, and theories. AI agents can impact areas
ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits
to developing new therapies.
INTRODUCTION

A long-standing ambition for artificial intelligence (AI) is the

development of AI systems that can make major scientific dis-

coveries, learn on their own, and acquire knowledge autono-

mously.While this concept of an ‘‘AI scientist’’ is aspirational, ad-

vances in agent-based AI pave the way to the development of AI

agents as conversable systems capable of reflective learning

and reasoning that coordinate large language models (LLMs),

machine learning (ML) tools, experimental platforms, or even

combinations of them1–4 (Figure 1). The complexity of biology

calls for approaches that flexibly decompose complex problems

into actionable tasks. AI agents can break down a problem into

manageable subtasks, which can then be addressed by agents

with specialized functions for targeted problem solving and inte-

gration of scientific knowledge.1,5 In the near future, AI agents

can accelerate discovery workflows by making them faster and

more resource-efficient. AI agents improve the efficiency of

routine tasks, automate repetitive processes, and analyze large

datasets to navigate hypothesis spaces at a scale and precision

that surpasses current human-driven efforts. This automation al-

lows for continuous, high-throughput research that would be

impossible for human researchers to perform alone at the
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same scale or speed. Looking ahead, AI agents can provide in-

sights beyond what traditional machine learning alone can

achieve by making predictions across temporal and spatial

scales before experimental measurements at those scales are

available. Ultimately, they may help uncover new modes of

behavior within biological systems.5

This vision is possible thanks to advances in LLMs,6–8 multi-

modal learning, and generative models. Chat-optimized LLMs,

such as GPT-4,9 can incorporate feedback, enabling AI agents

to cooperate through conversations with each other andwith hu-

mans.10 These conversations can involve agents seeking human

feedback and critique and identifying gaps in their knowl-

edge.11,12 Then, since a single LLM can exhibit a broad range

of capabilities—especially when configured with appropriate

prompts and inference settings—conversations between differ-

ently configured agents can combine these capabilities in a

modular manner.13 LLMs have also demonstrated the ability to

solve complex tasks by breaking them into subtasks.14,15 How-

ever, suppose we follow conventional approaches to foundation

models such as LLMs and other large pre-trainedmodels. In that

case, we may not develop AI agents that can generate novel hy-

potheses because such novelty would not have been in the data

used to train the model, suggesting that current foundation
ber 31, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 6125
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models alone are not sufficient for AI scientists. Using LLMs as a

comparison, generating novel hypotheses requires creativity

and grounding in scientific knowledge, whereas generating

novel text requires adherence to semantic and syntactic rules,16

so the latter approach aligns well with techniques for next-token

prediction within LLMs, while the former might not.

Here, we offer a perspective that AI scientists can be realized

as AI agents backed by humans, LLMs, ML models, and other

tools like experimental platforms that together form compound

AI systems. An AI agent should be able to formulate biomedical

hypotheses, critically evaluate them, characterize their uncer-

tainty, and use that as a driver to acquire and refine its scientific

knowledge bases in a way that human scientists can trust.17 AI

agents should be designed to adapt to new biological insights,

incorporate the latest scientific findings, and refine hypotheses

based on experimental results. This adaptability ensures agents

remain relevant in the face of rapidly evolving biological data,16

balancing between encoding new findings and retaining old

knowledge.18

Realizing this perspective shift, biomedical AI agents can

impact areas ranging from virtual cell simulation, programmable

control of phenotypes, and the design of cellular circuits to

developing new therapies. Virtual cell simulation involves

creating detailed models of cellular processes where AI can pre-

dict the effects of genetic modifications or drug treatments on

cell behavior. This can allow for an understanding of cellular

mechanisms and generation of testable hypotheses, reducing

the time and cost of traditional methods. Programmable control

of phenotypes leverages AI agents to design precise genetic

modifications to study gene functions. For example, CRISPR-

based gene editing guided by an AI agent can activate or inhibit

specific genes across large cell populations in a multi-round ed-

iting campaign. Each round involves identifying the next edit

based on the user-specified target phenotype and experimental

readout from the previous round. Designing cellular circuits in-

volves using AI agents to predict the behavior of genetic compo-

nents and optimize their arrangement to create circuits that

perform tasks such as sensing environmental changes or pro-

ducing therapeutic proteins.

Ethical considerations arise from biomedical AI agents.19,20

Allowing them to make changes in environments through ML

tools or calls to experimental platforms can be dangerous.

Safeguards need to be in place to prevent harm.21 Conversely,

discovery workflows might include conversations between AI

agents (but no interaction with environments is allowed). In

that case, we need to consider the impact of such interactions

on human scientists and their reliance on AI agents. Addition-

ally, a key challenge specific to biomedical AI agents is the

lack of large, diverse experimental datasets beyond the current
Figure 1. Empowering biomedical research with AI agents
AI agents are laying the groundwork for AI scientists as compound AI systems cap
agents based on conversable large language models (LLMs) and can coordinate
binations of them. Robotic agent, AI agent that operates robotic hardware for p
databases via function calling and application programming interfaces (APIs); reas
hypothesis agent, AI agent that is creative and reflective when developing hypoth
refine its scientific knowledge bases; brainstorming agent, AI agent that generate
search engines as tools to rapidly gather information; analysis agent, AI agent ca
concepts; and experimental planning agent, AI agent that optimizes an experime
focus areas in structural and cell biology. AI agents must repre-

sent biomedical knowledge efficiently, generalize well to new

tasks, and acquire new skills with minimal or no additional

training. While AI agents can empower research and support

operations under human oversight, their potential impact and

associated challenges underscore the importance of respon-

sible implementation.

EVOLVING USE OF DATA-DRIVEN MODELS IN
BIOMEDICAL RESEARCH

Over the past several decades, data-driven models have re-

shaped biomedical research by developing databases (DBs),

search engines, ML, and interactive and foundation learning

models (Figure 2). These models have advanced modeling of

proteins,22–26 genes,27 phenotypes,28 clinical outcomes,29–31

and chemical compounds32,33 through mining of biomed-

ical data.

DBs and search engines
In biological research, DBs34–36 aggregate knowledge from ex-

periments and studies, offering searchable repositories contain-

ing standardized biological data vocabularies. An example of

such a DB is the AlphaFold Protein Structure DB,37 which in-

cludes more than 200 million protein structures predicted by Al-

phaFold.38 Molecular search engines retrieve information from

these DBs.39–41 FoldSeek42 retrieves protein structures from

the AlphaFold DB by translating query structures into 3D interac-

tion alphabet sequences and using pre-trained substitution

matrices. Search engines are designed to retrieve information

based on specific queries, lacking the ability to refine these

queries through reasoning. They cannot iteratively process ob-

tained information to refine results or customize subsequent ac-

tions. Additionally, while DBs reduce the risk of misinformation

through curated data, they lack mechanisms to identify and re-

move irrelevant information.

Distinct from search engines, AI agents are capable of

reasoning to formulate search queries and subsequently acquire

information. Curated DBs offer structured and factual informa-

tion, aiding in reducing the risks associated with misinformation

potentially generated by agent hallucinations.43,44 For example,

the retrieval-augmented generation (RAG)44 is equipped for AI

agents to answer questions based on scientific literature. A

notable feature of these agents is their ability to retrieve informa-

tion when needed and to create and iteratively process the ob-

tained passages. This reflection process makes the agent

controllable during inference, allowing for customization of its

actions tomeet task requirements beyondwhat is possible using

search engines and DB queries.
able of skeptical learning and reasoning. These multi-agent systems consist of
machine learning (ML) tools, experimental platforms, humans, or even com-

hysical experiments; database agent, AI agent that can access information in
oning agent, AI agent capable of direct reasoning and reasoningwith feedback;
eses, capable of characterizing its own uncertainty and using that as a driver to
s a broad spectrum of research ideas; search engine agent, AI agent that uses
pable of analyzing experimental results to summarize findings and synthesize
ntal protocol for execution.
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Figure 2. Evolving use of data-driven models
Data-driven approaches, from databases and search engines, ML, and
interactive learning models to advanced agent systems, have reshaped
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ML models
Beyond information retrieval, MLmodels excel in identifying pat-

terns and assimilating latent knowledge to generalize predictions

about novel data.45,46 Existing ML models typically require

specialized models for each task and do not possess the

reasoning and interactive capabilities that distinguish AI agents.

An example is the AlphaFold,38 which predicts 3D protein struc-

tures with high accuracy using multi-sequence alignment with a

deep learning model but is tailored for protein folding. AI agents

represent an evolution in MLmodels, building on the foundations

of successes such as the transformer architecture47 and gener-

ative pretraining.8 These agents’ reasoning and interactive capa-

bilities distinguish them from ML models, which typically require

specialized models for each task. Unlike traditional ML models,

agents assess the evolving environment, which is valuable for

modeling dynamic biological systems.

Interactive learning models
Interactive learning, often referred to as active learning48 and

reinforcement learning,49 represents a further advancement in

ML models by incorporating exploration mechanisms and hu-

man feedback. Active learning strategies can help build models

for datasets with small sample sizes when conventional ML

models might be insufficient due to limited statistical power. It

selectively queries the most informative data points for labeling

and optimizing the learning process, which improves how

models learn with data. Reinforcement learning involves an

agent learning how to act by observing the results of past actions

in an environment, mirroring the trial-and-error approach. In bio-

logical research, interactive learning has been used for small

molecule design,50 protein design,51,52 drug discovery,53,54

perturbation experiment design,55 and cancer screening.56 For

instance, GENTRL50 uses reinforcement learning to navigate

the chemical space and identify chemical compounds that can

act against biological targets. However, interactive models are

predominantly designed for narrow use cases and struggle to

generalize to new goals without retraining the models from

scratch. Leveraging interactive learning, AI agents achieve

greater autonomy in information retrieval tasks. Active learning

improves training efficiency through data labeling selected to

maximize model performance. However, AI agents extend

beyond this data-centric approach; for example, reinforcement

learning with human feedback (RLHF)49 uses a ‘‘reward model’’

to train an LLM-based agent with direct human feedback to un-

derstand human instruction naturally.

AI agents
Biomedical AI agents have advanced capabilities, including pro-

active information acquisition through perception modules,

interaction with tools, reasoning, and engaging with and learning

from their environments. Agents use external tools, such as lab

equipment, and have perception modules, such as integrated vi-

sual ML tools, to receive information from the environment.

Agents can incorporate search engines and ML tools and
biomedical research throughout the last several decades. Circles represent
studies focused predominantly on algorithmic ML innovation; diamonds are
used to indicate representative studies that used AI for biomedical discovery.
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process information across data modalities via perception mod-

ules to generate hypotheses and refine them based on scientific

evidence.1,2

TYPES OF BIOMEDICAL AI AGENTS

The prevailing approach to building agents is to use LLMs, where

a single LLM is programmed to perform various roles. However,

beyond LLM agents, we envision multi-agent systems for dis-

covery workflows that combine heterogeneous agents (Figure 1)

consisting of ML tools, domain-specific specialized tools, and

human experts. Given that much of biomedical research is not

text-based, such agents have broader applicability to biomedi-

cine than LLM-based agents alone.

LLM-based AI agents
Programming a single LLMwith diverse roles equips LLM-based

agents with conversational interfaces that emulate human

expertise and can access tools57,58 (Figure 3A). The rationale

behind this approach stems from pretraining an LLM to encode

general knowledge, followed by in-domain fine-tuning of the

LLM to encode domain-specific specialist knowledge, and align-

ing the LLM with human users through role-playing and conver-

sation. Instruction tuning59 can be used for the former by training

the LLM to follow human instruction through prompt examples,

including dialogues that incorporate biological reasoning.60

Additionally, RLHF optimizes LLM performance by selecting

the most human-preferred outputs from a range of responses

to specific prompts, further aligning LLMs with human roles.

Consequently, a single LLM, programmed to fulfill multiple roles,

can provide a more practical and effective solution than devel-

oping specialized models. By assigning specific roles, the

agents can replicate the specialized knowledge of experts

across various fields, such as structural biology, genetics, and

chemistry, surpassing the capabilities of querying a non-special-

ized LLM61 and performing tasks previously not possible.62 Early

results in clinical medicine question-answering suggest that as-

signing specific roles, such as clinicians, to GPT-461 can achieve

better performance in terms of accuracy on multiple-choice

benchmarks compared with using domain-specialized LLMs

like BioGPT,63 NYUTron,64 and Med-PaLM.65,66

We envision three approaches for assigning roles to biological

AI agents: domain-specific fine-tuning, in-context learning, and

automatic generation of agentic roles. The first approach involves

instruction tuning an LLM across many biological tasks to ground

the LLM in the biological domain, followed by RLHF to ensure that

the tuned LLM performs tasks aligned with scientists’ goals and

needs. The second approach uses in-context learning of LLMs67

to process longer contextual information provided in inputs,

suchasbiologist-generated instructions, enablingagents tograsp

the domain context for each task. This approach is supported by

using textual prompts to define agent roles.62,68 Both strategies

require biologists to gather task-specific data or craft precise

prompts. However, since human-defined roles might not always

guide agents as intended, there is a growing shift toward granting

LLM-based agents greater autonomy in defining their roles. This

shift in role definition enables agents to autonomously generate

and refine role prompts and engage in self-directed learning and
role identification. For instance, an agent’s ability to evolve and

tailor its prompts in reaction touser inputshasbeendemonstrated

in Fernando et al.69 Additionally, self-referential learning frame-

works can be employed to optimize prompt design when assign-

ing roles to agents,70 enabling them to transition from task execu-

tors to entities capable of autonomous setup.

The agent system, comprising a single LLM prompted to

adopt various roles, has shown to be a valuable support tool in

scientific research. Studies suggest that agents set up to

perform specific roles exhibit enhanced capabilities compared

with either sequentially querying a single LLMor employing a sin-

gle tool repetitively. A case in point is Coscientist,1 which shows

the potential of GPT-4-based agents for chemical research

tasks, including optimizing reactions for palladium-catalyzed

cross-couplings. Within Coscientist, GPT-4 undertakes the role

of a planner, serving as a research assistant. The agent uses

in-context prompts to use tools such as web and documentation

search and code execution via Python application programming

interface (API) and symbolic lab language (SLL).1 To complete

tasks that require access to a physical device, the planning agent

starts with a prompt provided by the scientist and uses search

tools to compile documentation for the experiment. Following

this, the agent generates SLL code and executes it, which entails

transferring it onto the device and controlling the device.

Multi-agent AI systems
LLM-based agents implemented through autoregressive LLM ap-

proaches acquire skills such as planning and reasoning by

emulating observed behaviors in training datasets. However,

this mimicry-based learning results in limited agent capabilities,

as theydonot achieve a deepunderstanding of these behaviors.71

Consequently, a single agent often lacks the comprehensive skill

set needed to complete complex tasks. A practical alternative is

deploying amulti-agent AI system, wherein the task is segmented

into more manageable subtasks. This approach allows individual

agents to address specific subtasks efficiently, even with

incomplete capabilities. Distinct from single-LLM-based agents,

a multi-agent system incorporates several agents endowed with

specialized capabilities, tools, and domain-specific knowledge.

For successful task execution, these agents must conform to

working protocols. Such cooperative efforts equip LLMs with

unique roles, specialized knowledge bases, and varied toolsets,

simulating an interdisciplinary team of biology specialists. This

approach is akin to the diverse expertise found across depart-

ments within a university or an institute.

In the following, we introduce five collaborative designs for

multi-agent systems.

Brainstorming agents

Brainstorming research ideas with multiple agents (Figure 3B)

constitutes a collaborative session to generate a broad spectrum

of research concepts through the joint expertise of scientists and

agents. In such sessions, agents are prompted to contribute

ideas, prioritizing the volume of contributions over their initial

quality to foster creativity and innovation. This method encour-

ages the proposal of unconventional and novel ideas, allowing

participants to build upon the suggestions of others to uncover

new avenues of inquiry while withholding judgment or critique.

The process enables agents to apply their domain knowledge
Cell 187, October 31, 2024 6129



Figure 3. Diverse configurations of AI agents in biomedicine—from an LLM-based AI agent to a multi-agent system with AI models, tools,

and integrated physical devices
(A) By programming an LLM with the role, one LLM-based agent, equipped with memory and reasoning abilities, performs multimodal perception and utilizes a
range of tools, e.g., web lab tools, to accomplish specified tasks.
(B–E) Leveraging AI agents equippedwith diverse roles, perceptionmodules, tools, and domain knowledge enables collaboration between agents and scientists.
This collaboration can adopt various configurations, such as expert consultation, debate, brainstorming, and roundtable discussions.
(F) Multi-agent systems can establish a self-driving laboratory wherein numerous agents collaborate on multiple iterations of biological research assisted by
humans. Each cycle of research encompasses the generation of hypotheses, the design of experiments, the execution of experiments both in silico and in vitro,
and the analysis of results.
Computing agent, AI agent that utilizes computational models as tools; decision agent, AI agent that makes decisions in response to given conditions; database
agent, AI agent that retrieves relevant information from databases; reasoning agent, AI agent capable of direct reasoning and reasoning with feedback; expert
agent, AI agent that provides professional consultation based on reliable sources, such as domain expertise, feedback from human experts, and the results of
specific tools; hypothesis agent, AI agent capable of reflective learning and reasoning to generate hypotheses; planner agent, AI agent that devises plans for
future actions; and in silico/vitro agent, AI agent that uses tools in silico or in vitro environment.
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and resources to form a collective idea pool. Each agent would

provide insights and generate hypotheses based on their

specialized knowledge, which the group can then integrate

and refine. For example, in a multi-agent system designed for

Alzheimer’s research, agents could specialize in microglia

biology, neuronal degeneration, and neuroinflammation. To

explore new therapeutic targets for Alzheimer’s disease, an

agent specialized in microglia biology might propose investi-

gating the role of microglial cells in synaptic pruning, while

another agent focused on neuronal degeneration could suggest

examining the protective effects of certain neurotrophic factors.

These diverse ideas are pooled together, allowing researchers to

explore a comprehensive range of potential research directions.

Expert consultation agents

Expert consultation (Figure 3C) entails soliciting expertise from in-

dividuals or entities with specialized knowledge. This process in-

volves expert agents gathering information from various sources

and providing insights, solutions, decisions, or evaluations in

response. Other agents or humans then refine their approaches

based on this feedback. LLMs have the potential to assist in offer-

ing scientific critiques on research manuscripts, as demonstrated

in recent studies.72 However, LLMs lack the nuanced understand-

ing of human reviewers and should be seen as complementary to,

not a replacement for, human expertise. Similarly, an AI agent

might consult another agent specialized in a specific area to refine

ideas within AI systems, mirroring the mentor-mentee dynamics

found in academic environments. In another example, in address-

ing Alzheimer’s and related dementias, diagnosing Alzheimer’s

based on cognitive criteria might present borderline cases.

Consulting an AI agent could offer additional perspectives, deter-

mining if such cases align with Alzheimer’s based on brain pathol-

ogy or alternative biomarkers.

Research debate agents

In a research debate (Figure 3D), two teams of agents present

contrasting perspectives on a research topic, aiming to

persuade the agents of the opposing team. Agents are split

into two groups, each adopting distinct roles for the debate.

One group gathers evidence to fortify its position using various

knowledge sources and tools, while the opposing group cri-

tiques this evidence, striving to expose or neutralize its weak-

nesses with superior evidence. The objective for each faction

is to articulate their arguments more effectively than their rivals,

engaging in a systematic discourse to defend their viewpoint and

challenge the veracity of their adversaries’ assertions. Thismeth-

odology promotes critical thinking and bolsters effective

communication as each team endeavors to construct the most

compelling argument supporting their stance.

Roundtable discussion agents

Roundtable discussions (Figure 3E) involve multiple agents

engaging in a process that fosters the expression of diverse

viewpoints to make collaborative decisions on the topics under

discussion. In such sessions, agents articulate their ideas and in-

sights, pose questions, and provide feedback on others’ contri-

butions. They then respond to these queries, refine their initial

propositions based on feedback, or attempt to persuade their

peers. This method promotes equal participation among all

agents, urging them to contribute their expertise and perspec-

tives, offer constructive criticism, question underlying assump-
tions, and suggest amendments to improve the proposed solu-

tions. Reconcile73 implements a multi-agent collaborative

framework where multiple LLM-based agents engage in several

rounds of dialogue to reach a consensus on research questions.

Agents attempt to convince each other to adjust their responses

and use a confidence-weighted voting mechanism to achieve a

more accurate consensus than if a single LLM-based agent is

used. During each discussion round, Reconcile orchestrates

the interaction between agents using a ‘‘discussion prompt,’’

which includes grouped answers and explanations produced

by each agent in the preceding round, their confidence levels,

and examples of human explanations for correcting answers.

Self-driving lab agents

The self-driving laboratory (Figure 3F) is a multi-agent system

where the end-to-end discovery workflow is iteratively optimized

under the broad direction of scientists but without requiring step-

by-step human oversight.74 Once the agent system is trained, it

can describe experiments necessary to test the generated hy-

potheses, analyze the results of said experiments, and use

them to improve its internal scientific knowledge models. Agents

in the self-driving system need to address the following three el-

ements: determine inductive biases to reduce the search space

of hypotheses, implement methods to rank order hypotheses

considering their potential biomedical value with experimental

cost, characterize skepticism via uncertainty quantification and

analysis of experiments in reference to the original hypothesis,

and refine hypotheses using data and counterexamples from ex-

periments.75 Ideally, hypothesis agents are creative and reflec-

tivewhendeveloping biological hypotheses that extrapolate indi-

rectly from the existing body of knowledge.16 There is emerging

evidence that generative models have the potential to generate

novel hypotheses. Tshitoyan et al.76 demonstrated that using

latent knowledge from published materials science literature

can recommend novel materials. GPTChem77 leveraged LLMs

trained with an autoregressive pretraining objective to predict

molecules. Experimental agents steer operational agents that

use a combination of in silico approaches and physical platforms

toexecute experiments.Reasoningagents integrate the latest re-

sults to guide future experimental design. The utility of experi-

mental results, such as the yield of high-throughput screening

of a chemical library against a biological target, can be compared

for different versions of the agent system given a time budget for

hypothesis and experiment generation.

LEVELS OF AUTONOMY IN AI AGENTS

When integrated with experimental platforms, AI agents can op-

erate at varying levels of autonomy tailored to diverse require-

ments across biomedicine. We classify these AI agents into

four levels according to their proficiency in hypothesis genera-

tion, experimental design and execution, and reasoning (Table 1).

Specific capabilities within each area define these levels, neces-

sitating that agents exhibit the capabilities for a given level

across all areas (an agent with level 3 capabilities in the experi-

ment area but only level 2 capabilities in Reasoning and Hypoth-

esis areas would be classified as level 2).

Level 0, denoted as ‘‘no AI agent,’’ uses ML models as tools

coordinated by interactive and foundation learning models. At
Cell 187, October 31, 2024 6131



Table 1. Levels of autonomy in AI agents

Autonomy levels Hypothesis generation Experimental design Reasoning Human-AI collaboration

Level 0: no

AI agents

none ML models perform

predefined tasks,

with no adaptive

changes to the protocols

none scientist defines the

hypothesis and sometimes

uses the output of ML

models to help with hypothesis

generation; scientist

defines the task to test

hypothesis; scientist

completes tasks

Level 1: AI agents

as assistants

AI agent formulates

simple and narrow

hypotheses that are

a direct composition

of existing knowledge,

preliminary data,

or observations

narrow design of

experimental protocols

and utilization of in silico

and experimental tools

strong reasoning in a

selected task; multimodal

summary of findings;

use of experimental

data and existing

knowledge

scientist defines the

hypothesis; scientist

defines the series of

tasks to test hypothesis;

AI agent completes tasks

Level 2: AI agents

as collaborators

AI agent generates

hypotheses that are

an explicit continuation

of data trends and

known literature

design of rigorous experimental

protocols and adept utilization

of a broad range of ex silico

tools; once data are collected,

employ statistical and

computational methods to

analyze the results and

interpret the data to determine

whether it supports or refutes

the hypothesis

interpreting findings within

existing knowledge,

considering alternative

explanations, and assessing

the reliability and validity

of the findings; synthesis

of concepts beyond a

summary of findings;

collaborating with other

researchers and undergoing

peer review to validate

findings and ensure that

conclusions are robust

and credible

scientist proposes initial

hypothesis and refines

hypothesis together with AI agent;

AI agent defines the series

of tasks to test hypothesis;

AI agent completes tasks

Level 3: AI agents

as scientists

AI agent generates

creative, de novo

hypotheses that are

indirect extrapolations

from existing

knowledge

development of experimental

methods unlocking new

capabilities; actively gathering

data through experiments

or simulations

using various techniques and

tools to measure and record

biological phenomena

based on the results and

interpretations, refine

experimental approaches

for continuous learning and

adaptation to improve the

accuracy and depth of

understanding; find concise,

informative and clear

conceptual links between

findings

scientist and AI agent

together form hypothesis;

AI agent defines the series

of tasks to test hypothesis;

AI agent completes tasks

AI agents are characterized by four levels of autonomy in biological research, which are defined based on the capabilities of AI agents to complete

different steps of the discovery process. At level 0, there is no AI agent, and ML is used as a tool. Level 1 consists of AI agents as research assistants,

where agents complete a set of narrow and specific tasks defined by scientists. At level 2, AI agents act as collaborators and can use a broad set of

tools to identify scientific discoveries. Still, they can only generate hypotheses that are a linear continuation of literature. Finally, at level 3, AI agents act

similarly to human scientists across several axes of human evaluation, capable of identifying and understanding pioneering discoveries and extrap-

olating novel hypotheses that cannot be derived from existing knowledge.
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this level, ML models do not independently formulate testable

and falsifiable statements78 as hypotheses. Instead, model out-

puts help scientists to form precise hypotheses. For example, a

study employed AlphaFold-Multimer to predict interactions of

‘‘DONSON,’’ a protein with limited understanding, leading to a

hypothesis about its functions.79 Level 1, termed ‘‘AI agent as

a research assistant,’’ features scientists setting hypotheses,

specifying necessary tasks to achieve objectives, and assigning

specific functions to agents. These agents work with a restricted

range of tools and multimodal data to execute these tasks.

For instance, ChemCrow2 combines chain-of-thought (CoT)
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reasoning80 with ML tools to support tasks in organic chemistry,

identifying and summarizing literature to inform experiments. In

another example, AutoBa81 automates multi-omic analyses.

These two agents are designed for narrow scientific domains;

ChemCrow and AutoBa optimize and execute actions to com-

plete tasks that are designed and predefined by scientists. Level

1 agents2,81–83 formulate simple hypotheses inferred from exist-

ing knowledge and utilize a limited set of tools, lacking the ca-

pacity necessary to achieve level 2 autonomy.

At level 2, ‘‘AI agent as a collaborator,’’ the role of AI expands

as scientists and agents collaboratively refine hypotheses.
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Agents undertake tasks critical for hypothesis testing, using a

wider array of ML and experimental tools for scientific discov-

ery.76 However, their capability to understand scientific phenom-

ena and generate innovative hypotheses remains constrained,

highlighting a linear progression from existing studies. The tran-

sition to level 3, or ‘‘AI agent as a scientist,’’ marks a major evo-

lution, with agents capable of developing and extrapolating hy-

potheses beyond the scope of prior research, synthesizing

concepts beyond summarizing findings and establishing

concise, informative, and clear conceptual links between find-

ings that cannot be inferred from literature alone, eventually

yielding a new scientific understanding. While multiple level 1

agents exist across various scientific fields, levels 2 and 3 agents

have yet to be realized. Existing taxonomies of autonomy focus

on the division of responsibilities between AI agents and hu-

mans, with no consideration of biomedical discovery. These tax-

onomies were developed with the goal of advancing artificial

general intelligence to surpass human performance across

different skill levels, rather than being tailored to scientific

research.84

As the level of autonomy increases, so does the potential for

misuse and the risk of scientists becoming overly reliant on AI

agents. While agents have the potential to enhance scientific

integrity, there are concerns regarding their use in identifying

hazardous substances or controlled substances.85 Respon-

sible development of agents requires developing preventive

measures.86,87 The responsible deployment of agents must

account for the risk of over-reliance, particularly in light of

evidence that LLMs can produce convincing but misleading

claims and spread misinformation. The risks will likely in-

crease as agents undertake more autonomous research

activities. Agents must be scrutinized as scientists, including

reproducibility and rigorous peer review of agentic research.

We illustrate these definitions of levels by giving examples in

genetics, cell biology, and chemical biology (Table 2). We

selected these areas because of the availability of large data-

sets that have recently driven the development and application

of ML models. Key ML and biological terms are described in

Tables 3 and 4.

Illustration of AI agents in genetics
Research in human genetics seeks to understand the impact of

DNA sequence variation on human traits. LLM-based agents

operating at level 1 would perform specific tasks relevant to ge-

netic studies. For instance, in a genome-wide association study

(GWAS), a level 1 agent can write bioinformatics code to pro-

cess genotype data to (1) execute quality control measures,

such as the removal of single-nucleotide polymorphisms

(SNPs) missing in many individuals or control for population

stratification,88 (2) estimate ungenotyped SNPs through imputa-

tion, and (3) conduct the appropriate statistical analyses to iden-

tify relevant SNPs, taking into account the false discovery

rate.89 Following the analysis, the level 1 agent reviews and re-

ports findings, including any filtered SNPs and rationales for

their exclusion.

Instead of executing narrow tasks following human instruction,

a level 2 agent identifies and executes tasks independently to

refine a hypothesis initially given by the scientist. For example,
it may explore the effectiveness of drugs for a patient subgroup

within complex diseases, where genetic underpinnings can influ-

ence drug response.90 Given a hypothesis that a particular drug

is effective in a subset of patients with idiopathic or genetic

generalized epilepsy (GGE)—a condition with a robust genetic

causality91—a level 2 agent would synthesize genetic informa-

tion from GWAS meta-analyses,92 such as the UK Biobank,93

targeted sequencing studies,94 and knowledge bases like Gen-

es4Epilepsy.95 The agent identifies GGE subtypes and causal

genes by analyzing patient genetic data, predicting which sub-

groups might benefit from the drug based on genetic markers.

It would then conduct in vitro functional studies to confirm these

predictions, ultimately presenting evidence on how the drug

could benefit GGE patient subpopulations by synthesizing con-

cepts beyond summarizing findings.

Level 3 agents coordinate a system of agents (Figure 3) to

discover and evaluate gene markers for specific phenotypes.

These agents help initiate new study groups and optimize non-

invasive methods of DNA collection for cost-effectiveness and

recruitment processes.96 Once data are collected, the agents

innovate statistical methods to identify causal variants from

genotypic data amidst confounders such as linkage disequilib-

rium97 and develop in vitro techniques for validating candidate

gene markers in disease models. Level 3 agents collaborate

with scientists to generate and test hypotheses for comprehen-

sive genetic insights.

Illustration of AI agents in cell biology
Cells are fundamental units of study in cell biology. Advances in

single-cell omics, super-resolution microscopy, and gene

editing have generated datasets on normal and perturbed

cells, covering areas such as multi-omics,98–100 cell viability,101

morphology,102 cryoelectron microscopy and tomogra-

phy,103,104 and multiplexed spatial proteomics.105,106 This prolif-

eration of data has spurred interest in in silico cell modeling.107

ML tools have been instrumental in analyzing data across

these cellular modalities, but as level 0 agents, they lack auton-

omous research capabilities. At level 1, agents integrate special-

ized level 0 models to assist in hypothesis testing. These agents

actively assist scientists in developing hypotheses by synthesiz-

ing literature and predicting cellular responses using integrated

models. For example, to help investigate the resistance mecha-

nism of a compound, level 1 agents predict its effects in various

cellular contexts.108 These predictions also inform experimental

design, such as spatial transcriptomic109 and proteomic110,111

screening. Agents then retrieve and refine experimental proto-

cols for execution on platforms112 and apply predefined bioinfor-

matics pipelines, as instructed by scientists.

Level 2 agents execute predefined tasks and generate hypoth-

eses on cellular functions and responses. They autonomously

define and refine tasks to support scientific reasoning, enabling

practical exploration of complex phenotypes like drug resis-

tance. Bymanaging the experimental cycle and continuously up-

dating their in silico tools, level 2 agents actively optimize exper-

iments to focus on key variables of resistance based on a

synthesis of predictive content, uncertainty, and newly acquired

data, with iterative feedback from scientists.55 Level 2 agents

thus form a prototype for a virtual cell model capable of
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Table 2. Examples of levels of autonomy of AI agents in genetics, cell biology, and chemical biology

Autonomy levels Genetics (mutational effect modeling) Cell biology (drug resistance) Chemical biology (binder design)

Level 0 statistical package to analyze a pre-

selected GWAS study

use of ML tools for modeling cellular

outcomes of drug perturbations, including

cell imaging, omics, and viability

use of ML tools for protein structure

prediction, molecular docking, and

generative models for binder design

Level 1 to explore potential mutational associations

with disease, writes bioinformatics software

for quality control and statistical analysis of

genotype data from pre-fetched relevant

GWAS studies

integrates multimodal (imaging, omics, and

viability) and multiscale (cellular, tissue)

data to create in silico models of drug

resistance; retrieves and executes existing

experimental protocols to study resistance;

analyzes raw image and omics data with

predefined pipelines

studies a specific protein target, integrates

ML tools, such as AlphaFold for structure

prediction and neural networks for

screening chemical libraries to find

candidate chemical compounds to bind to

the target

Level 2 selects GWAS studies relevant to a

provided hypothesis; if none exists, it

designs and executes its own study or pulls

other relevant genomic data to investigate

the hypothesis

autonomously develops and adaptively

refines hypotheses about resistance

mechanisms based on knowledge and

real-time experimental data analytics;

designs and executes scalable and cost-

effective experimental protocols with

experts in the loop

designs binders for more challenging

targets; identifies scaffolds that bind to

similar pockets and adapts them for the

target; synthesizes and tests molecules

using existing experimental techniques

Level 3 initiates genomic studies and optimizes

non-invasive methods of DNA collection for

cost-effectiveness and ease of participant

requirement; innovates statistical methods

to identify causal variants from genotypic

data and develops in vitro techniques for

validating candidate gene markers in

disease models

proactively identifies critical unresolved

problems in drug resistance, proposing

innovative therapeutic strategies; performs

in silico simulations of cellular dynamics in

tumor contexts and under complex

perturbations (combinatorial genetic and

chemical perturbations under different

dosing schedules); develops novel highly

multiplexed in vivo single-cell spatial

technologies, enabling live tracking of gene

expression, molecular interactions, and

cell-cell interactions during resistance

evolution

proposes de novo binders for an

undruggable target or a poorly studied

target; designs in situ experiments to study

molecular interactions; synthesizes

molecules with more complex pathways

and designs and executes assays to test

efficacy
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Table 3. Glossary of key machine learning terms

Term Description

Multimodal foundation model advanced algorithms trained on multimodal datasets that can process various

data types, including text, images, biological sequences, and high-dimensional

tabular readouts; this training allows them to perform a broad array of tasks through

few-shot fine-tuning and prompting across domains with little to no additional training

Transformer architecture deep learning model architecture that uses on self-attention mechanism to capture

long-range dependencies in input sequence data

Large language model machine learning model with parameters on the scale of billions, trained on vast

amounts of text data to understand, generate, and interact with human language

on a large scale

Generative pretraining strategy for training a machine learning model in an autoregressive manner to

predict the next token from given data tokens, facilitating a general understanding

of data sequence likelihoods

LLM-based AI agent AI system capable of solving complex tasks within its environment by equipping

large language model with modules for perception, interaction, memory, and reasoning

Embodied AI agent AI agent system that interacts with the physical world through a body; the embodiment

enables the agent to learn and adapt from sensory feedback and physical interactions

Fine-tuning a training process of making small adjustments to a pre-trained machine learning

model to improve its accuracy on a specific task or dataset

Instruction tuning a training strategy that fine-tunes a model using a dataset of instructions and corresponding

outputs to enhance its ability to follow specific instructions

Reinforcement learning

with human feedback

a reinforcement learning strategy where an action model learns to perform tasks by

receiving feedback from a reward model that mimics human preferences, guiding it

to align with desired human behaviors

Prompting techniques that provide specific text or other modal input instructions to guide the

model in responding toward a desired output direction

Cross-modal alignment a training scheme to align the representation embeddings of models

across various modalities

In-context learning ability to perform new tasks based on a handful of examples provided within the

contextual prompt, without requiring explicit model training

Retrieval-augmented generation techniques that make generative models to produce contextually relevant text by

retrieving pertinent information and using it to inform the generation process
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hypothesis generation, encompassing closed-loop integration of

digital and experimental platforms.

Level 3 agents respond to existing challenges and antici-

pate future directions in cell biology research. They form

hybrid virtual cell models by combining AI tools (digital agents)

with high-throughput platforms (experimental agents). Digital

agents, such as LLM-based agents, autonomously identify

critical knowledge gaps through literature synthesis based

on criteria such as data volume, biological relevance, and clin-

ical needs and simulate any perturbagen (extrinsic events

such as gene knockouts and overexpression, compounds,

cell-cell interactions; intrinsic events such as cell cycle) in

any context. Experimental agents not only optimize experi-

mental protocols102,113,114 to enable high-throughput multi-

modal measurements but also develop transformative tech-

nologies to enable probing at unprecedented resolution

across space and time across in vitro, ex vivo, and in vivo

models, uncovering pioneering insights. The ability of level 3

agents to drive the discovery of biological mechanisms and

therapeutic strategies shifts the role of scientists from con-

ducting operational tasks to focusing on ideation and manag-

ing hybrid cell models.
Illustration of AI agents in chemical biology
A major focus for chemical biology is understanding molecular

interactions within cells to manipulate biological systems at mo-

lecular and cellular levels. An AI agent could analyze any molec-

ular interaction, help design new drugs, and provide more valu-

able chemical probes for biological systems.

Despite considerable advances in applying ML to chemical

biology, current approaches fall in level 0. Scientists oversee

all activities by integrating ML tools for structure prediction,

docking, chemical synthesis, and molecular generation. At level

1, the agent has elementary reasoning of chemical biology and

can execute simple tasks autonomously, such as running ML

tools or designing experiments for a given objective. However,

due to limited reasoning capabilities, the agentmay fail to explain

more complex concepts, such as how the dynamics of mole-

cules may influence the effects of drugs on binders or explore

novel molecular scaffolds. For a level 2, the long-term objective

is its function as a collaborator for scientists through excelling at

tasks that are explicit continuations of existing scientific

research, such as improving the efficiency of chemical probes,

autonomously designing and testing de novo enzymes, or

designing new binders by leveraging trends in related targets.
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Table 4. Glossary of key biological terms

Term Description

Linkage

disequilibrium

a phenomenon in which two alleles occur so

often in proximity in the chromosome that

their association cannot be random

Single-nucleotide

polymorphisms

genetic variation consisting of the

replacement of a single nucleotide in the

DNA sequence

Genome-wide

association study

approach that identifies genetic variations

across the entire genome associated with a

specific disease or complex trait

Pharmacogenetics field of research that aims to understand

individuals’ responses to different drugs

based on their genetic factors

Experiment in vitro procedures and investigations that occur

within a laboratory environment (e.g., in a

test tube) and outside of living organisms

In silico modeling the use of computers to build simulations or

experiments that recreate complex

biological phenomena to be able to study

and predict specific behaviors; for example,

modeling of molecular dynamics

Mass spectrometry analytical tools to characterize and identify

individual molecules based on specific

properties (e.g., mass-to-charge ratio)

Molecular docking computational simulation tools used to

predict how ligands bind to receptors

Retro-synthesis techniques to design the synthesis of

complex molecules by starting from the

target and moving back to the original

compounds

Crystallography field of science studying the structure of

atoms and molecules in crystals, which are

solid materials whose compounds are

ordered according to a very regular and

ordered arrangement

Cryoelectron

microscopy

imaging techniques used to identify the 3D

structure of bio-molecules with near-atomic

resolution without the need for extensive

sample preparation and with the overall

preservation of the sample

Single-cell

RNA sequencing

high-throughput method that isolates

individual cells and sequences their mRNA

to measure gene expression levels of

individual cells

Single-cell ATAC

sequencing

high-throughput method that isolates

individual cells and sequences their

accessible chromatin tomeasure chromatin

accessibility levels of individual cells
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Level 2 AI agents have deeper expertise in more domains, such

as retro-synthesis, crystallography, bioassays, and directing ro-

botic arms to conduct research.

The goal of a level 3 agent in chemical biology is the ability to

study all types of molecular interactions in a cell. This agent

would work alongside human scientists to explore research

questions that are challenging for the field, such as binder design

for undruggable targets,115 significantly improving specificity
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and efficiency of in vivo bioorthogonal reactions, or developing

new chemical probes that can access new spatial and temporal

scales. Unlike the level 2 agent’s use of well-established proto-

cols, a level 3 agent aims to unlock experimental capabilities

that are not currently accessible. For example, AI agents could

be tasked to probe molecular dynamics at longer timescales

than what is currently accessible. At this level, agents have a

thorough understanding of existing literature and work alongside

scientists to unlock new fields of chemical biology.

ROADMAP FOR BUILDING AI AGENTS

An AI agent is built as a compound system that consists of mod-

ules3,57,58 each implementing a distinct functionality. Here, we

describe thesemodules (Figure 4), focusing on perception, inter-

action, memory, and reasoning modules necessary for AI agents

to interact with humans and engage with experimental environ-

ments. Interactions between the agent and its environment are

characterized by two elements: the agent’s perception of its sur-

roundings and its subsequent engagement with them. Percep-

tion modules enable the agent to interpret and assimilate infor-

mation from various data modalities. Then, learning and

memory allow agents to interact with an environment and com-

plete tasks by acquiring new knowledge and retrieving previ-

ously learned ones. Finally, the reasoning module processes in-

formation and executes action plans. Using a published study as

an example,116 Figure 5E illustrates a hypothetical AI agent that

sets up experiments to study the selective removal of mitochon-

drial DNA inDrosophila through perception, interaction, memory,

and reasoning modules.

The division of research into smaller tasks handled by AI

agents presents an intriguing approach, building on the success

of modular and sequential bioinformatics workflows like Snake-

make and Docker. Unlike these workflows, which are often static

and require manual updates and reconfiguration to handle new

tasks or integrate new tools, AI agents are dynamic and operate

in a personalized, user-specific, and context-appropriate

manner. They can learn to use new tools and adjust their work-

flows based on the specific instructions and needs of the scien-

tist. Further, the adaptive allocation of tasks by AI agents can be

helpful in automatically incorporating new tools and restructuring

existing pipelines, much like a human researcher would. For

example, AI agents could experiment with and create new proto-

cols beyond the currently established methods in integrating

multimodal omics data. For instance, while established proto-

cols for integrating multimodal, such as single-cell RNA

sequencing (scRNA-seq) with scATAC-seq or spatial data, exist,

AI agents could develop new pipelines for multimodal integra-

tions beyond the three modalities, or multiscale integrations

such as atlas-scale single-cell and bulk RNA-seq data, or normal

and disease state data from cell lines, organoids, and patient

samples, based on their initial attempts.

Perception modules
Perceptionmodules equip LLM-based agents with the capability

to understand and interact with elements in the environment in

which they operate, such as biological workflows and human

users. For perception, agents need to integrate abilities to



Figure 4. Key modules in AI agents: perception, interaction, reasoning, and memory modules
Perception interprets multimodal environmental data. Interaction facilitates engagement with the environment, encompassing human-agent interactions, multi-
agent interactions, and tool use. Memory is responsible for the storage and retrieval of knowledge, while learning focuses on the acquisition and updating of
knowledge. Reasoning, with or without environmental feedback, plays a crucial role in planning and decision-making processes. Cross-modal alignment is a key
technique for the perception of LLM-based agents, where inputs from different modalities are alignedwithin a text-centered representation space. This alignment
enables the LLM to perceive and process various input modalities. Reasoning patterns for AI agents indicate transitions between reasoning thoughts. For
instance, agents with a chain-of-thought pattern generate reasoning in a step-by-step manner.
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receive feedback from multiple sources: scientists,49 the envi-

ronment,62 and other AI agents.13,117 This requires accommoda-

ting a diverse array of modalities. These include text descrip-

tions6; images from light and cryoelectron microscopy to

assess cellular processes across many conditions simulta-

neously103,104,118; videos from live imaging to assess develop-

mental processes or animal behaviors across time119; longitudi-

nal biosensor readouts and genomics profiles of cells120; mass

spectrometry-based proteomics to decipher protein homeosta-

sis24,121; and miniaturized platforms for conducting biochemical

assays and 3D culture systems that mimic the physiological

context of organ systems.112
AI agents can take different approaches to interacting with

environments. The most direct one involves using natural lan-

guage, which represents a common perception modality for

LLM-based agents. Other techniques involve multimodal

perception modules, where agents process multimodal data

streams from the environment or align multimodal inputs with

text-based LLMs.

Conversational modules

With the rise of ChatGPT, the ability of AI agents to interpret nat-

ural language has reached such a high level49 that it is now

possible to build interfaces to agent systems that are entirely

based on natural language with limited misinterpretations. The
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Figure 5. Illustration of components in biomedical AI agents
(A) Use of a short-term memory module to recall previous relevant experiments for small molecule inhibitor design.
(B) Use of a long-term memory module to retrieve relevant information for target prioritization for a disease.
(C) Use of direct reasoning without scientist feedback to prioritize genes for downstream phenotype analyses.
(D) Use of reasoning with feedback from scientists to select and optimize an alternative experimental approach.
(E) Combining perception, interaction, memory, and reasoning modules to study the selection against pathogenic mitochondrial DNA in the germline.
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main focus is chat interfaces that preserve conversational history

in a scrolling window, where users can converse with agents in a

manner that resembles the standard approach of written human-

to-human interaction. This approach allows scientists to express
6138 Cell 187, October 31, 2024
their queries using their language, promoting initiative and

enabling them to precisely describe what they want. We envision

that agents will maintain a history of interaction with scientists

using natural language, which, in turn, will allow us to keep track
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of scientific interactions with agents.62,68 Combining traces of

these interactions with RAG, we can develop personalized dis-

covery workflows tailored to individual scientists.

Multimodal perception modules

Agents align LLMs with other data types to fuse data modalities

beyond natural language text. This approach helps agents better

model the changing environment in which the agent acts and

dynamically adjust its outputs to new situations, such as evolved

biological states in a virtual cell model. The alignment process in-

volves two main strategies: textual translation and representa-

tion alignment. Textual translation converts inputs into a textual

format, such as transforming data from robotics into textual de-

scriptions that log environmental states.9 For example, when

handling readouts from experimental devices, the readouts

can be combined with a textual description of their meaning, al-

lowing the LLM to understand the readouts as a new modality.

Alternatively, through representation alignment, data from

different modalities are analyzed by modality-specific models

to generate representations, such as using the visual encoder

from CLIP122 for visual information processing. These represen-

tations are then aligned with LLM textual representations

through instruction tuning,118,123 enabling agents powered by

LLMs to perceive and interpret multimodal data. For instance,

to make LLM-based agents handle the protein structure data,

an additional encoder is required to encode the protein structure

data into a representation aligned with the LLMs’ representation

space. This encoder is pre-trained with modality-specific

training schemes, and an adaptor is placed between this

encoder and LLMs to align the representations of the twomodal-

ities. Then, instruction tuning is applied using data containing

both modalities to train the adaptor for alignment. An alternative

to alignment involves allowing the agents to receive input ex-

pressed in different modalities.7,124 For instance, Fuyu124 uses

a decoder-only transformer architecture to process image

patches and text tokens jointly. Similarly, Gemini7 is engineered

to handle visual, audio, and text inputs within a single model.

Once perception modules are implemented for agents to receive

inputs from the environment, modules for interaction and

reasoning follow to process the inputs and interact externally.

Training agents with strong perception abilities on biomedical

data requires extensive, high-quality data pairs that align multi-

ple modalities. However, collecting such data remains chal-

lenging. For example, multimodal experimental platforms are

non-existent or have low-throughput yields, certain tissues and

cell types are not experimentally available, and a long tail of dis-

ease phenotypes has small sample sizes, making data collection

infeasible.

Interaction modules
Beyond conversational modules, scientists use ML-based and

other tools in biological research, explore datasets through

graphical user interfaces (GUIs) to analyze and visualize data,

and engage with physical equipment and wet lab experimental

platforms. Chat-optimized LLM-based agents thus need interac-

tion capabilities to communicate and collaborate with scientists,

other AI agents, and tools to function beyond a simple chatbot.

Agents must incorporate essential interaction modules to

interact with elements in the environment. These include
agent-human interaction to support communication with scien-

tists and following human instruction,125,126 multi-agent interac-

tion for collaboration among agents, and tool-use action to ac-

cess ML tools and experimental platforms.

Interactive abilities of LLMs, when combined with function

calling, can act as an intermediary between scientists and the

agent’s interface, as well as between scientists and other func-

tional items, such as tools and other agents. This approach al-

lows scientists to express their intentions in natural language

without needing to search for how and where to accomplish

tasks. At the same time, the advantages of functional items are

preserved because agents can interact with tools and use

them to provide feedback. However, interactive modules trained

on general, non-biological domains might not be well-suited for

specialized biomedical terminologies, requiring in-domain

training on biomedical tools.

Agent-human interaction modules

The interaction between scientists and AI agents synchronizes

scientific objectives with AI agents through cooperative commu-

nication andmodeling of biological knowledge. Natural language

processing and human evaluation methods are predominantly

used to develop this interaction capability. InstructGPT49 en-

hances the GPT model through supervised fine-tuning with ex-

amples of human dialogues to improve the model’s conversa-

tional skills. The alignment between agents and humans can

be refined through RLHF, which adjusts the model based on a

reward model trained using human assessments of the model’s

responses. Alternatively, RLHF can be replaced by direct prefer-

ence optimization,127 which is a parameterized method that pro-

vides amore consistent and efficient alignment with human pref-

erences. Through agent-human interaction, agents become

attuned to human needs and preferences,10,126 using human

insight as a directive for carrying out complex tasks.13 For

instance, Inner Monologue126 employs human feedback to

discern user preferences or interpret ambiguous requests in an

embodied context. In AutoGPT,10 humans formulate tasks and

score solutions returned by agents, and AutoGen13 can use hu-

man expertise to solve tasks better than agents alone.

Multi-agent interaction

Multi-agent interactions support solving complex goals that

agents could not complete if they operated independently. In

such interdisciplinary systems, agents that could specialize in

different biological domains, each with distinct capabilities,

engage in interactions through various communication means.

Language has emerged as the predominant medium for multi-

agent interactions due to the ability of agents to communicate

with humans linguistically.4,13,73,117,128 An instanceof this is gener-

ative agents,62 which create interactive environments where

agentsmimichumanbehavior and interact usingnatural language.

Different strategies are used for multi-agent interaction, including

cooperation129–131 and negotiation.73,132,133 For example,

MetaGPT130 applies standardized operating procedures from hu-

man teamwork to define tasks and agent responsibilities.

Through these approaches, agent interactions make it

possible to tackle tasks that are too complex for just one agent

to handle.82,134 MedAgent82 leverages the expertise of multiple

medical AI agents for medical reasoning. Similarly, RoCo134 em-

ploys robot agents with varied roles to accomplish complex
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tasks in the physical world. Multi-agent interaction can also

boost the proficiency of less skilled agents by allowing them to

learn from more experienced counterparts.135 These interac-

tions also enable the creation of simulations for a variety of envi-

ronments, ranging from public health scenarios136 to human so-

cial behaviors,62,137 enhancing the system’s adaptability and

application in diverse contexts.

Tool use

To manage tasks from diverse environments, agents require

tools to boost their capabilities.138 Commonly used tools are

application APIs,139 search engines,140 ML models,141 knowl-

edge DBs,142 and robotic machinery for physical tasks.9,143,144

Level 1 agent systems have been developed that can interact

with one or more types of tools. ChemCrow2 leverages chemical

tools and search engines to address chemical challenges.

WebGPT140 can conduct searches and navigate web browsing

environments. SayCan144 controls a robot in the physical world

using an LLM to complete tasks. To invoke these tools, AI agents

generate commands in specific formats139,141,142 or query pre-

trained control models to execute actions.144,145 To develop

these capabilities, agents can use in-context learning141 or

fine-tuning with tool-use demonstrations,139 where the latter

represents a more sophisticated approach.

For in-context learning, it is necessary to include system abil-

ities in the prompt so the agent can use function calling to query

tools. For example, HuggingGPT141 uses ChatGPT as a

controller to integrate all ML models on Hugging Face through

in-context learning. The alternative approach consists of using

model fine-tuning with function calling to create an LLM-based

agent with integrated abilities of a function/tool. For instance,

Toolformer139 introduces a self-supervised learning method to

master the use of tools’ APIs with minimal demonstrations for

each API.

By modeling scientists’ needs by analyzing natural language

textual inputs, AI agents can select the most likely available

tool, identify the desired user interface component, and

execute the scientist’s expected actions. Interaction modules

are designed to be integrated and adapted to suit changing en-

vironments. For level 2 and level 3 agents, agents autono-

mously learn new types of interactions and how/when to start

using new tools.

Memory and learning modules
When using tools and ML models for biological research, scien-

tists keep records of experimental logs and plan their next steps

based on them. In AI agents, memorymodules alleviate the need

for manual log recording by memorizing necessary experimental

outputs. Contrary to MLmodels that perform one-time inference

to generate predictions, memory modules in LLM-based agents

store and recall information. This is necessary for executing

complex tasks and adapting to new or evolving environments.

Memory modules are designed to store long-term and short-

term learned knowledge. As agents encounter new situations

and acquire data, memory modules get updated with new infor-

mation.

Long-term memory modules

Long-term memory stores essential and factual knowledge that

underpins agent behavior and understanding of the world,
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ensuring this information persists beyond task completion. This

memory can be internal, encoded within the model’s weights via

learning processes,8,146 or external, maintained in auxiliary knowl-

edge bases.147,148 Internal memory is directly used for accom-

plishing zero-shot tasks6,7 while accessing external memory re-

quires actions by the agent to fetch and integrate data into

short-term memory for immediate use.149,150 For instance,

ChatDB142 uses an external DB for memory storage, and

MemoryBank151 encodes memory segments into embeddings

for later retrieval. Agents can query knowledge banks, such as a

GWAS DB to find genetic evidence for a candidate protein target,

a knowledge base of therapeutic mechanisms of action, and sci-

entific literature with up-to-date information for the agent to inte-

grate and decide whether the protein can be modulated through

a therapeutic perturbation (Figure 5B). The learning process up-

dates long-term memory by adding new knowledge or replacing

outdated information. Internal memory of an agent can be up-

dated using parameter-efficient fine-tuning,146,152 interactive

learning,49 and model editing.153 These strategies must be effec-

tive for largemodels152 and avoid the loss of previously learned in-

formation.154 On the other hand, updating external memory is

more straightforward, involving modifications to the knowledge

base.142,151 For example, in drug discovery, updating long-term

memory by adding a new compound in development to the

drug bank is a convenient way to maintain an up-to-date agent.

Short-term memory modules

AI agents use short-term memory to temporarily store informa-

tion during their interactions. This short-term memory is enabled

through in-context learning, where relevant information is inte-

grated as context prompts144,155 or via latent embeddings118,123

in LLMs. For chatbots, previous conversations are kept as text

prompts, supporting multiple rounds of dialogue.49,156 The

text-based approach lays the groundwork for communication

in multi-agent73,133 and agent-human scenarios.10,13 In

embodied AI agents, environmental feedback144,155 is captured

in textual format, acting as a short-term memory that aids

reasoning. Following perception, multimodal inputs are con-

verted into latent embeddings, which function as short-term

memory. LLaVA118 uses latent embeddings generated by visual

encoders to retain visual information. Short-term memory allows

agents to temporarily acquire skills, such as tool usage,139,141

store information about recent states of a biological sys-

tem,155,156 and keep track of outcomes from earlier reasoning ef-

forts.11 This learningmechanism is crucial for agents to learn and

apply new knowledge under new conditions. Moreover, short-

termmemory can temporarily override long-termmemory, allow-

ing agents to precede recent information over older knowledge

within their model weights.157 Agents can be informed by past

experiences stored in their short-term memory to tell which ex-

periments to run in the future. In Figure 5A, we detail an example

where the agent recalls experiments for a similar protein to

inform the initial inhibitor design for the given protein.

Reasoning modules
Biological research involves a multidisciplinary and multistage

process that integrates the expertise of scientists from various

disciplines. Scientists formulate hypotheses, design experiments

based on these hypotheses, interpret the results, and plan the
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next steps. The integration of reasoning capabilities in AI agents

can assist biological research throughout this process. Reasoning

improves agents’ capabilities to plan experiments, make deci-

sions on biological hypotheses, and resolve competing candidate

biological mechanisms. AI agents that use LLMs can implement

interactive dialogue systems to explain ML models through natu-

ral language conversations. Reasoning modules can be imple-

mented using prompting158 and few-shot in-context learning.80

Additionally, agents can use planner models159,160 and action

models.155 We classify reasoning modules into two categories:

direct reasoning and reasoning with feedback, depending on

whether agents adjust their plan in response to experimental or

human feedback.

Direct reasoning modules

In direct reasoning, an agent performs planning and reasoning

based on the current state of the environment, which can follow

different reasoning patterns, such as single-path and multi-path

reasoning. Single-path reasoning involves the agent breaking

down the task into multiple recursive steps.161 For instance,

CoT reasoning allows agents to reason step-by-step either by

using in-context examples80 or by applying a zeroshot prompt

like ‘‘Let’s think step-by-step’’158. Leap-of-thought162 encour-

ages the model to use creative rather than logical reasoning.

Although single-path reasoning matches well with certain situa-

tions,163 its ability to adjust to different conditions is limited.

Conversely, multi-path reasoning examines several paths

before consolidating them into a final plan,164,165 allowing for a

more thorough planning process that accounts for different sce-

narios. For example, least-to-most prompting166 breaks down

tasks into subproblems solved sequentially. Self-consistent

CoT167 chooses the most consistent answer from a set of CoT

answers. Tree-of-thoughts164 extends reasoning paths into a

tree-like structure, generating multiple paths from each thought

node and using search algorithms to select the final path. Graph-

of-thoughts168 further develops reasoning paths into a graph

structure for complex reasoning. To identify the optimal path,

methods such as voting strategies,167 Monte Carlo tree

search,169 and breadth/depth-first search algorithms164 are

used. Through direct reasoning, agents can generate thought

that could consider the protein targets in a pathway and exper-

iments to test the role of a candidate protein target (Figure 5C).

Reasoning with feedback

Experimental and human feedback can help AI agents to

improve reasoning and planning processes.11,68,149 This feed-

back may include agent-human interaction and responses

from agents, which can be complementary biological assays

quantifying downstream effects of target molecules.170 In each

reasoning cycle, React11 incorporates insights from previous ac-

tions to refine its thought process and inform future actions.

LLM-Planner171 dynamically adjusts plans based on new obser-

vations in an embodied environment. Inner Monologue126 uses

both passive and active scene descriptions and feedback from

recent actions to guide future actions. Voyager68 improves plan-

ning for subsequent steps by considering environment feed-

back, execution errors, and self-verification.

Beyond external feedback, an agent’s feedback mechanism

enables self-assessing the initial plan.170,172 Techniques like

self-refine170 revise action outputs based on the LLM evaluation,
the self-check170 mechanism allows the agent to review and

adjust its reasoning, and reflection12 mechanisms use prompt

agents to update their decision-making. These techniques incor-

porate feedback from biologists, such as exploring experimental

methods and environmental constraints like lab inventory

(Figure 5D). Reasoning capabilities are necessary for generating

hypotheses and conducting experiments. Generating novel hy-

potheses requires modeling general biomedical knowledge,

the specific information on the current state of a biological sys-

tem, and consideration of potential next steps. LLM-based

agents can generate hypotheses through in-context reasoning,

but careful selection is necessary to ensure high-quality hy-

potheses.173

CHALLENGES

This perspective outlines key steps for implementing AI agents in

biomedical research and identifies areas that could benefit from

agentic AI. However, challenges remain and may be amplified

with the introduction of multi-agent systems (Figure 6).

Robustness and reliability
A barrier facing the deployment of agent systems—specifically

those categorized within levels 2 and 3 as discussed in Table 1—

is their propensity for generating unreliable predictions, including

the hallucination of non-factual information, reasoning errors, sys-

tematic biases, and failures in planningwhen connectedwith tools

and experimental platforms. These issues can be exacerbated by

overconfidence in such flawed predictions (agents lack aware-

ness of their knowledge gaps) and high sensitivity to the precise

formulation of queries, particularly in the context of LLM-based

agents. This behavior has been traced to how these models are

trained. In particular, autoregressive loss compares the predicted

word sequence with the actual sequence in the training data. The

performance of a model trained with this loss is determined by

three factors: the probability distribution of the inputs, the

sequence of generated outputs, and the frequency of different

tasks encountered during training.174 As a result, model perfor-

mance degrades on task variants that deviate from the assump-

tions made during training.175

Sensitivity to input and task probability also offers a potential

explanation for the widely observed success of various prompt-

ing techniques80,164,176 (methods to paraphrase the same

query). By providing informative context, instructive reasoning

steps, or representative examples, these techniques can act

as an empirical means by which task and input probability

(and, thus, model performance) are increased. However, crafting

high-quality prompts tends to be highly empirical while requiring

significant effort and domain knowledge.

Beyond the linguistic domain, even the most advanced

models fail in tasks with real-world entities that require physically

meaningful actions, posing an obstacle to embodied agents.

While embedding continuous sensor data into a language model

can lead to improvements,120 limitations to understanding phys-

ical interactions and long-horizon planning remain. The com-

plexities of training such multimodal systems, the need for large

datasets to cover the range of embodied tasks and environ-

ments, and the computational demands of processing
Cell 187, October 31, 2024 6141



Figure 6. Challenges for AI agents in

biomedical discovery
Shown are critical challenges—including robust-
ness and reliability, evaluation protocols, dataset
generation, governance, and risks—alongside
strategic approaches to address them.
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multimodal inputs all remain open questions.7 Deployment faces

challenges from false negatives causing repeated attempts and

eventual stalling of the embodied agent.126 Hence, it is neces-

sary to verify the agent action plan before execution.

Uncertainty quantification can trigger fall-back safety mea-

sures like early termination, predefined safe maneuvers, or hu-

man-in-the-loop interventions. However, foundation models

cannot reason about the uncertainty associated with their out-

puts, and no well-established statistical protocol exists for

increasingly ubiquitous architectures.47,177 Techniques such as

various forms of prompting, e.g., Wang et al.,167 Tian et al.,178

and Kuhn et al.179 estimate uncertainty based on the model’s

predictive distribution, p(output|input), which may itself be sub-

ject to bias174; furthermore, it does not consider the distribution

of model parameters consistent with the observed training data

andmarginalizes over its predictions.180While conformal predic-

tion181 has emerged as a framework for uncertainty estimation of

model predictions, its sensitivity to the choice of underlying sta-

tistical assumptions and the calibration of confidence levels have

been criticized. The lack of a default technique is partly due to the

difficulty of establishing a thorough quality assessment of uncer-

tainty estimates. This makes it difficult to make choices in agent

design and to reassure users about its calibration.

One concern is that advanced capabilities come at the cost of

compromised transparency and the risk of misalignment. For
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instance, integrating human feedback

can promote desirable agent behavior,

but it can also exacerbate persuasive abil-

ities, echoing false beliefs.182 Fine-tuning

existing models with new data can

compromise their original alignment, chal-

lenging the integrity of the AI agent’s in-

tended purpose.183 Jailbreak attacks can

similarly affect post-deployment, high-

lighting the need for rigorous evaluation.184

Errors are inevitable in complex multi-

agent systems, making their manage-

ment crucial to maintaining system

robustness and reliability. Due to their

interactive nature, these systems are sen-

sitive to compounding errors, where small

issues can escalate into significant prob-

lems if not addressed promptly. Effective

error management strategies are essen-

tial for diagnosing, localizing, and miti-

gating such errors.

Evaluation protocols
With more AI agents being developed,

frameworks for biologists and lay user
evaluations need to assess axes of agent performance beyond

accuracy. Evaluating AI agents requires an analysis of their theo-

retical capabilities and an assessment of practical implications,

including ethical considerations, regulatory compliance, and

the ability to integrate into discovery workflows. The challenge

lies in developing evaluations that consider these diverse fac-

tors. Agents that integrateML tools, particularly those developed

by corporations, may undergo updates without prior notice to

users. This poses challenges for reproducibility, as updates

may alter the model’s behavior or performance without re-

searchers being aware. The scientific community needs trans-

parent change logs and version control for agents, akin to prac-

tice in software development.

Existing evaluation frameworks consider either holistic evalua-

tions185,186 or benchmark the models for weak spots such as

task framing,187,188 long temporal dependencies, invalid format-

ting, or refusal to follow instructions.189 A caveat of such frame-

works is the risk of evaluating how well the agents have learned

to use specific APIs versus general results grounded in real-world

interaction. Another challenge in evaluating agents is that biolog-

ical systems are inherently dynamic, characterized by non-sta-

tionary distributions that evolve due to geneticmutations, environ-

mental changes, and evolutionary pressures. Agents trained on

static datasets may struggle to accurately model or predict out-

comes in these changing systems. The challenge lies in
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developing agents capable of adapting to or continuously learning

from new data, ensuring their predictions remain accurate as the

underlying biological systems change. Techniques such as online

learning, transfer learning, and reinforcement learning can beused

to address this issue, but they come with their own set of chal-

lenges related to data availability and model complexity. Another

challenge is the lack of standardization in biomedical discovery

workflows, including data generation protocols that vary based

on factors like disease cell lines, dosage levels, and timepoints.190

This variability complicates the evaluation of agents for experi-

mental planning. Evaluation of agents that use computational

tools and DBs will benefit from the increasing availability of stan-

dardized APIs.191,192

Dataset generation
As laid out, the vision for biomedical AI agents requires the capa-

bility of seeking, aggregating, perceiving, and reasoning over

data from various modalities, created using differing specifica-

tions and with inherent variation in quality and volume. To sup-

port this vision, there is a critical need for large, open datasets

that are both comprehensive and accessible, enabling the devel-

opment of models across biological applications. Much human

effort in building systems for biomedical research is dedicated

to gathering and preparing such data for use in ML models

(e.g., specific to a particular modality, such as graphs, time se-

ries, or discrete sequences193). This requires vetting processes

and clear criteria for assessing the reliability and applicability

of datasets.

Noisy data, characterized by errors, inconsistencies, and out-

liers, poses a significant challenge for models attempting to

extract meaningful patterns and insights with minimal human

oversight or data preparation effort. In addition, multimodal

data require models to process different data representations

and formats and bridge semantic gaps between them. Tackling

these challenges necessitates advanced feature extraction,

fusion, and noise mitigation techniques while maintaining

robustness. As no pretraining phase (no matter how extensive)

will be able to provide adequate examples from all data sources,

models will also have to generalize to previously unseen sensory

inputs.

Governance of AI agents
The governance of AI agents presents challenges that intersect

technological, scientific, ethical, and regulatory domains. One

challenge is establishing comprehensive governance frame-

works that balance innovation with accountability.194 As AI

agents gain autonomy, the necessity for robust guidelines to

ensure responsible development, deployment, and commercial-

ization grows. The discourse increasingly advocates for agent

safeguarding to take precedence over further advancements in

autonomy. Yet, navigating the regulatory landscape and forging

an international consensus on AI governance remains complex

while the advancement of agent capabilities continues. Striking

a balance between innovation and safeguarding against poten-

tial risks requires collaboration among industry leaders, scien-

tists, and policymakers.195

Safe adoption of AI agents requires addressing concerns of

safe deployment. Aligning ML tools, such as LLMs, with ethical
standards remains an open challenge, and ensuring the align-

ment of the agent as a digital entity raises complexity. Guidelines

concerning human-agent interactions are underdeveloped

despite the potential for unintended harmful consequences

and malicious intent. Safeguarding frameworks are developed

that include training, licensing, and mandatory safety and ethical

compliance checks for agents.86

As AI agents become more integral to workflows in biological

domains, monitoring their behavior grows increasingly com-

plex. Currently, verifying the accuracy and trustworthiness of

agent outputs is not straightforward, with only a limited number

of systems capable of linking generated content to relevant ref-

erences. It is essential to develop robust verification systems

that can provide traceable references for generated content.

Assessing the synthesized knowledge may be impractical and

unattainable as agents evolve further. When agents’ capabil-

ities become comparable to those of human experts, the risk

of becoming overly reliant on AI increases, which could

lead to a decrease in human expertise. In the worst-case sce-

nario, such reliance could introduce a broad spectrum of safety

hazards due to inadequate oversight. To address these chal-

lenges, human-in-the-loop approaches can help maintain

accountability. Continuous training and development of human

expertise alongside AI can mitigate the risks of over-reliance

on AI.

Risks and safeguards
Autonomous experiments that do not include careful planning,

broad consultation, competent execution, and ongoing adapta-

tion might create long-term harms that outweigh the benefits.

Although anticipating all potential complications is impossible,

exploring possible problems early and frequently could reduce

the expected cost of such issues. The ethical and technical con-

siderations relevant to AI agents are vast and deeply intercon-

nected, particularly in biomedicine. This section will highlight

some key categories.

Neglect can lead to risks similar to those of malicious intent.

Multi-agent systems where some agents represent LLMs might,

through equipment malfunctions and insufficient maintenance,

inadvertently create harmful substances, for instance, by

contaminating a procedure that would otherwise be safe. This

issue is not unique tomulti-agent systems; instead, it is a general

lab safety concern. However, the absence of close human su-

pervision removes a critical auditing layer. The increased role

of automation in agent systems raises safety issues: a powerful,

unaligned system prone tomisinterpreting user requests or unfa-

miliar with lab safety practices could, given access to a well-

stocked scientific facility, do damage by, for instance, mixing

volatile substances or developing and dispersing toxins or path-

ogens. These are among the scenarios that most concern AI

safety researchers.

Agents leverage LLMs’ world knowledge and general

reasoning abilities obtained during pretraining for robotics and

planning. However, while efforts have been made to teach the

robots the ‘‘dos,’’ the ‘‘don’ts’’ received less attention. Teaching

robot agents the don’ts is crucial for conveying instructions

about prohibited actions, assessing the agent’s understanding

of these restrictions, and ensuring compliance.196 For LLM
Cell 187, October 31, 2024 6143
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agents, plug-in safety chips196 feature safety constraint modules

that translate natural language constraints into formal safety

constraints for the robot to adhere to. Experiments with robots

highlight the potential for integrating formal methods with

LLMs for better robotic control.

LLMs trained in code completion can write Python programs

from docstrings197 by training the model on the code completion

task to write the code based on natural language commands.198

Given natural language commands, these code-writing LLMs

can be repurposed to write robot policy code. However, if the

translation inaccurately reflects the intended safety constraints,

it could lead to either overly restrictive behavior, preventing the

robot from performing its tasks effectively, or insufficiently strin-

gent constraints, leading to safety violations. However, the robot

policy code is less reliable for enforcing safety constraints than

verifiable safe operations that satisfy standards such as Interna-

tional Organization for Standardization (ISO) 61508. The

approach assumes that all given instructions are feasible and

lacks a mechanism to predict the correctness of a response

before execution. However, due to their reliance on patterns in

the training data, LLMs might generate syntactically correct

but semantically inappropriate code. Additionally, generalizing

plans across robotic embodiments is brittle with current LLMs.

Addressing the ethical implications of AI agents is paramount,

given the direct impact on human and animal health and life. The

handling of sensitive biological and medical data necessitates

robust technological and regulatory measures to ensure security

and confidentiality. One promising approach involves using pri-

vacy-preserving computation to train agents to protect the pri-

vacy of highly sensitive medical data. Homomorphic encryption

can secure sensitive data by allowing computations on encryp-

ted data, and federated learning techniques allow training agents

in a distributed manner without the need to centralize from

across sites into a single data repository.

Algorithmic fairness is equally crucial, as biased AI agents can

exacerbate health disparities across patients and increase in-

equalities in the volume of generated datasets and quality of

biomedical knowledge, especially for diseases in long-tailed dis-

tributions in biological systems. The development of techniques

such as adversarial debiasing and fair representation learning of-

fers promising avenues to mitigate these risks. In addition, the

black-box nature of these compound AI systems poses another

challenge, particularly in healthcare, where interpretability is vital

for clinical adoption and patient trust. To provide clearer ratio-

nales for the agents’ decisions and make them more acceptable

to users, it will become crucial to incorporate interactive dialogue

systems that explain agentic outputs through natural language

conversations. Ethical considerations surrounding biosafety

emerge as AI agents advance toward level 3 agents. These

issues intersect with ongoing debates in bioethics regarding

synthetic biology and artificial organisms, requiring regulatory

guidance and engagement from bioethicists and safety

experts to ensure alignment with societal values and safety

standards.

Challenges uniquely relevant for biomedical AI agents
Biomedical AI agents face several unique challenges that distin-

guish them from other applications of AI. While strong AI agents
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have the potential to mitigate some of these challenges, their im-

plementation in biomedical research requires careful consider-

ation. One of the primary challenges is the need for robust and

reliable systems capable of reasoning, planning, and executing

actions in both virtual and hybrid virtual-physical environments.

For instance, natural language reasoning chains can enhance

the interpretability of an agent’s actions and contextual out-

comes, aiding researchers in understanding AI-generated in-

sights. However, certain challenges persist that can delay the

reliable implementation of AI agents or even cause harm if these

systems are deployed prematurely. A critical issue is the diffi-

culty in distinguishing between correlation and causality. Current

AI agents struggle with generating strong hypotheses,

reasoning, and conducting experimental validations, tasks that

typically require advanced AI systems (level 3 agents) or human

intervention. Moreover, AI agents need improved interfaces to

interact safely and effectively with experimental platforms. These

platforms themselves face limitations in producing unbiased, AI-

ready datasets that accurately capture the intra- and inter-varia-

tion inherent in biological systems. Such limitations hinder the

generalization capabilities of AI agents, which rely on compre-

hensive and high-quality data to function optimally. The absence

of data from high-throughput techniques can lead to AI agents

forming false hypotheses or causing harm. This risk is exacer-

bated when AI agents work with small, biased biological data-

sets, which may be affected by issues like batch effects.

OUTLOOK

Biomedical research is undergoing a transformative era with ad-

vances in computational intelligence. Presently, AI’s role is con-

strained to assistive tools in low-stake and narrow tasks where

scientists can review the results. We outline agent-based AI to

pave the way for systems capable of reflective learning and

reasoning that consist of LLM-based systems and other ML

tools, experimental platforms, humans, or even combinations

of them. The continual nature of human-AI interaction and build-

ing trustworthy sandboxes,199 where AI agents can fail and learn

from their mistakes, is one way to achieve this. This involves

developing AI agents proficient in various tasks, such as plan-

ning discovery workflows with ML feedback loops for experi-

ments and performing self-assessment to identify and seek out

gaps in their knowledge.

Ensuring context-appropriate and user-specific agent
behavior
To ensure agents behave as intended, it is essential to focus on

their robustness and reliability by implementing evaluation proto-

cols that test agents in diverse scenarios to identify potential vul-

nerabilities. Moreover, grounding agents in ethical guidelines

and documentation, such as lab protocols and safety guidelines,

is vital to align their actions with human values and safety stan-

dards. By addressing these aspects, we can ensure that the

behavior of biomedical agents is both reliable and ethically

compliant.

Concretely, we believe that in the early stages of technological

adaptation, it is desirable to limit an agent’s capabilities to a sub-

set of their full potential by restricting action spaces, thereby
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eliminating the chance of catastrophic risk (e.g., decisions result-

ing in loss of life). Similar precedents for technological adaptation

are already in place for other autonomous systems with similar

risk profiles, such as autonomous driving, where a staggered

technological adaptation is motivated by ethical considerations.

Governance and responsible human-AI partnership
Managing errors requires designing strategies to diagnose,

localize, and mitigate them. To diagnose errors internally, agents

should use their reasoning abilities to build self-evaluation

schemes, allowing them to assess their current status and ac-

tions. Externally, training independent anomaly detection and dis-

tribution shift models with domain knowledge of specific biomed-

ical use cases can provide additional supervision to diagnose

errors. Iterative agent interactions can result in cascading errors.

Tomitigate this, the evaluation agent can apply reverse reasoning

chains to trace back to the initial error. Enhancing the adaptive

reasoning abilities of agents is crucial for dynamically adjusting

to changing conditions and rectifying errors as they occur.

To address the challenge of governance, we believe that

broad consensus is best achieved through multidisciplinary,

cross-partisan, non-profit, and public institutions committed to

the public good. We welcome the recent establishment of

several public AI safety institutions to facilitate these discus-

sions. Focus groups with expertise in AI agents can develop

ethical and technical evaluation standards that can form the ba-

sis for regulation, including the required degree of human over-

sight and accountability frameworks. Additionally, we advocate

for the development of policies through international initiatives

to minimize the risk of regulatory gaps, where risks might other-

wise be outsourced to jurisdictions lacking enforceable regu-

lations.

By fostering responsible human-AI partnerships and estab-

lishing robust governance frameworks, we can unlock the

transformative potential of AI agents in biomedical research.

Collaborative agentic approaches can lead to groundbreaking

advances, ultimately improving human health and well-being.
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