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SUMMARY
Current metagenomic tools can fail to identify highly divergent RNA viruses. We developed a deep learning
algorithm, termed LucaProt, to discover highly divergent RNA-dependent RNA polymerase (RdRP)
sequences in 10,487 metatranscriptomes generated from diverse global ecosystems. LucaProt integrates
both sequence and predicted structural information, enabling the accurate detection of RdRP sequences.
Using this approach, we identified 161,979 potential RNA virus species and 180 RNA virus supergroups,
including many previously poorly studied groups, as well as RNA virus genomes of exceptional length (up
to 47,250 nucleotides) and genomic complexity. A subset of these novel RNA viruses was confirmed by
RT-PCR and RNA/DNA sequencing. Newly discovered RNA viruses were present in diverse environments,
including air, hot springs, and hydrothermal vents, with virus diversity and abundance varying substantially
among ecosystems. This study advances virus discovery, highlights the scale of the virosphere, and provides
computational tools to better document the global RNA virome.
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INTRODUCTION

RNA viruses infect a diverse array of host species. Despite their

omnipresence, the pivotal role of RNA viruses as major constit-

uents of global ecosystems has only recently garnered recogni-

tion due to large-scale virus discovery initiatives in animals,1,2

plants,3 fungi,4 aquatic environments,5 marine environments,6

soil environments,7 and planetary metatranscriptomes.8 A com-

mon characteristic of these studies is their reliance on

the analysis of RNA-dependent RNA polymerase (RdRP)

sequences, a canonical component of RNA virus genomes.

Collectively, these studies have led to the identification of tens

of thousands of novel virus species, resulting in at least a

10-fold expansion of the virosphere and the proposal of new

phylum-level virus groups such as the ‘‘Taraviricota’’ (i.e., ‘‘que-

nyaviruses’’).6,9 Similarly, the data mining of metatranscriptomes

from diverse ecosystems has revealed several divergent clades

of RNA bacteriophage,10,11 while recent metatranscriptomic

studies have led to a remarkable 5-fold expansion in the diversity

of viroid-like circular RNAs.12–14 Despite such progress in uncov-

ering RNA virus diversity through ecological sampling and

sequencing, it is probable that more divergent groups of RNA vi-

ruses remain to be discovered.9,15 This is in part because the

current tools for metagenomic identification of RNA viruses

can miss some highly divergent RdRPs.16 It is therefore impera-

tive to develop innovative strategies for the efficient identification

of the full spectrum of RNA virus diversity.

Over the past decade, artificial intelligence (AI)-related ap-

proaches, especially deep learning algorithms, have had a major

impact on various research fields in the life sciences, such

asmolecular docking, compound screening and interaction, pro-

tein structure prediction and functional annotation, and infectious

diseasemodeling.17–22 This progress can be attributed to the ad-

vantages of deep learning algorithms over classic bioinformatic

approaches, including enhanced accuracy, superior perfor-

mance, reduced reliance on feature engineering, flexible model

architectures, and self-learning capabilities.23,24 Recently, deep

learning approaches, such as CHEER, VirHunter, Virtifier, and

RNN-VirSeeker, have been developed and applied to the identi-

fication of viruses from genomic and metagenomic data.25–28

These tools employ convolutional neural networks (CNNs)

and recurrent neural networks (RNNs). CNNs are specifically

designed for processing spatial data such as images and

leverage convolutions to exploit local correlations,29 whereas

RNNs are adept at handling sequential data by capturing tem-

poral dependencies and serial order memory.30 Despite their

versatility, both face limitations in processing biological se-

quences: CNNs may encounter challenges with inputs of

varying lengths and capturing global correlations, while

RNNs struggle with longer sequences due to vanishing or ex-

ploding gradients and difficulties in capturing long-term de-

pendencies. It is imperative to consider these shortcomings

when assessing their appropriateness for specific tasks. In

addition, many of these methodologies exclusively focus on

nucleotide sequences, disregarding protein sequences or

structural information, thereby constraining their capacity to

identify highly divergent RNA viruses. Recently, the trans-

former architecture has emerged as a powerful alternative
2 Cell 187, 1–14, November 27, 2024
for protein function predictions based on sequence data,

effectively accommodating sequences of varying lengths

and efficiently capturing both local and long-range relation-

ships across sequence positions, surpassing the capabilities

of CNNs and RNNs.31–34 Consequently, the transformer archi-

tecture can be leveraged to design better tools for identifying

highly divergent RNA viruses.

Herein, we present a transformer-based tool for RNA virus dis-

covery that utilizes protein sequences and the structural charac-

teristics of viral RdRP sequences. This tool was applied to a

dataset comprising 10,487 metatranscriptomes from diverse

ecological systems. To validate and perform comparative anal-

ysis, the same dataset was processed using other available bio-

informatics tools, and 50 samples were analyzed using both DNA

and RNA sequencing. By employing this tool in conjunction with

extensive sequence data, we demonstrate how AI can accu-

rately and efficiently detect RNA viruses exhibiting genetic diver-

gence beyond the capabilities of traditional similarity-based

methods, revealing previously unrecognized viral diversity.

RESULTS

Deep learning reveals the dark matter of the RNA
virosphere
We performed systematic searches to expand the diversity of

RNA viruses in a variety of ecological systems sampled on a

global scale (Figures 1 and 2; Tables S1 and S2). Accordingly,

a total of 10,487 metatranscriptomes (51 Tb of total sequencing

data) were assembled, which resulted in more than 1,368 million

contigs and 872 million predicted proteins. Based on this data-

set, potential viral RdRPs were revealed and cross-validated us-

ing two different strategies (Figures 1A, S1, and S2). Themajor AI

algorithm used here, denoted ‘‘LucaProt,’’ is a deep learning,

transformer-based model based on sequence and structural

features of 5,979 well-characterized viral RdRPs (positive sam-

ples) and 229,434 protein sequences that were not viral RdRPs

(negative samples), including non-RdRP viral proteins, reverse

transcriptases (RTs), and cellular proteins. LucaProt demon-

strated exceptional accuracy (0.014% false positives) and spec-

ificity (1.72% false negatives) when evaluated on the test dataset

(Figure 1B). Furthermore, the generalizability and robustness of

LucaProt were further confirmed through a 10-fold cross-valida-

tion analysis (Figure S2). Independently to LucaProt, we applied

a more conventional approach (i.e., ‘‘ClstrSearch’’) that clus-

tered all proteins based on their sequence similarity and then

used BLAST or Hidden Markov Models (HMMs) to identify

resemblance to viral RdRPs or non-viral RdRP proteins.

Bymerging the results of the two search strategies, we discov-

ered 513,134 RNA viral contigs, representing 161,979 putative

viral species (i.e., >90%RdRP identity), and 180RNA viral super-

groups that are comparable to existing viral classes and phyla as

defined by the International Committee on Taxonomy of Viruses

(ICTV; Figure 1; Table S3; see STARMethods). Subsequently, we

performed an automatic comparison of RdRP protein sequences

with a uniform definition (identity R 0.9, aligned fraction R 0.3)

among this and other studies to reveal a total of 70,458 putative

unique viral species newly identified by LucaProt (Figures 1C and

S3). Notably, we unveiled 60 previously unidentified and
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Figure 1. The global RNA virosphere

(A) RNA virus discovery pipeline. The pathway for sequence homolog-based virus discovery is highlighted in blue on the left, including the clustering, expand, and

merge steps. The RdRP AI modeling pathway is highlighted in orange on the right, including the modeling, clustering, and merge steps.

(B) Number of viral supergroups discovered using two methods (left) and the detection accuracy of LucaProt (right).

(C) Venn diagram shows the shared putative virus species between available data fromWolf et al.,5 Edgar et al.,8 Zayed et al.,6 Neri et al.,10 Chen et al.,7 Olendraite

et al.,35 and this study. The bar graph shows the shared viral supergroups between the seven studies and the unique viral supergroups identified in this study.

(D) Diverse RNA virus clusters (dark-colored small circle) andRNA virus supergroups (light-colored large circle). The known viral clusters and supergroups defined

by ICTV are shown in dark gray and light gray, respectively. The viral clusters and supergroups discovered by both ClstrSearch and LucaProt are shown in dark

blue and light blue, respectively. The viral clusters and supergroups additionally discovered by LucaProt only are shown in dark orange and light orange,

respectively.

See also Figures S1–S3 and Tables S1, S2, and S3.
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underexplored groups that have received only limited attention

to date5–8,10,35 (Figures 1C and S3). Among these, 512,690 viral

contigs (99.9% of total contigs) and 157 supergroups (87.2%)

were identified by both LucaProt and ClstrSearch, while an addi-

tional 444 contigs and 23 supergroups were only identified by

LucaProt (Figure 1D).

Benchmarking of LucaProt with other tools for virus
discovery
To assess the sensitivity and specificity of LucaProt, we bench-

marked it against four other virus discovery tools, utilizing the

same dataset and RdRP database. Notably, LucaProt exhibited

the highest recall rate (i.e., proportion of correctly predicted

true positives), while maintaining a relatively low false positive

rate (i.e., proportion of incorrectly predicted true negatives as

positives; Figure 3A), along with reasonable computational effi-
ciency (Figure 3E). Specifically, in comparisons, HMMscan and

PalmScan showed the highest precision rates (99.80% and

99.46%) but the lowest recall rates (65.00% and 65.03%), while

Diamond BLAST and HH-suite both exhibited the highest false

positive rate (0.195%and 0.573%; Figure 3A). When considering

all RdRPs identified in this study, LucaProt exhibited the most

comprehensive virus discovery (98.22%), whereas the other

four virus discovery tools could only identify a portion of the entire

collection (76.82%–87.81%; Figure 3B). Importantly, our bench-

marking results demonstrated that the other virus discovery tools

only identified a minority (<42%) of the new viruses identified by

LucaProt only (i.e., but not by ClstrSearch; Figure 3C).

Of note, LucaProt successfully recalled over 98% of the virus

RdRPs identified by six other published studies,5–8,10,35 even

though none were used in either training or testing of the models

(Figure 3D). The exception was the study of Olendraite et al.,35
Cell 187, 1–14, November 27, 2024 3
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Figure 2. Geographic coverage of the metatranscriptomic data analyzed in this study

(A) Geographical distribution of the samples analyzed at an ecosystem level. Pie size is positively correlated to the number of samples (log10). The DBSCAN

clustering algorithm was applied to group 1,837 latitude and longitude points from all metatranscriptomes into 70 clustered points.

(B) Total number of samples at different ecosystems. The embedded bar chart represents the samples used for dual RNA and DNA sequencing in this study.
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for which LucaProt had a slightly lower recall rate (Figure 3D).

Manual inspection and sequence alignment revealed that the se-

quences from Olendraite et al.35 not detected by LucaProt

lacked the core RdRP domain region. LucaProt also outper-

formed CHEER, VirHunter, Virtifier, and RNN-VirSeeker RNA vi-

rus discovery tools25–28 in terms of recall, precision, and long
4 Cell 187, 1–14, November 27, 2024
sequence processing (Figures 3F–3H). The advanced trans-

former architecture incorporated into LucaProt allowed the par-

allel processing of longer amino acid sequences,31,36 which can

better capture the relationships between residues from distant

parts of sequence space than the CNN and/or RNN encoders

implemented in the other bioinformatic tools compared.
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Figure 3. Benchmarking of LucaProt with other virus discovery tools

(A) The recall, precision, and false positive rates of LucaProt, Diamond, HMMscan, HH-suite, and PalmScan were compared using the 50 metatranscriptomes

sequenced in this study.

(B) The recall of LucaProt, Diamond, HMMscan, HH-suite, and PalmScan in identifying all the RdRPs identified in this study.

(C) The recall of LucaProt, Diamond, HMMscan, HH-suite, and PalmScan compared for the RdRPs additionally identified by LucaProt only.

(D) Recall of LucaProt in identifying RdRPs (length R 300 aa) from six previous studies.

(E) The average time used by each bioinformatic tool was calculated based on six datasets of varying lengths, each comprising 50 positive sequences and 50

negative sequences.

(F) Recall rate of prediction results for CHEER, VirHunter, Virtifier, RNN-VirSeeker, and LucaProt based on all the RdRPs identified in this study.

(G) Precision rate and false positive rate of prediction results for CHEER, VirHunter, Virtifier, RNN-VirSeeker, and LucaProt based on the test dataset.

(H) Number of viral sequences of different groups by contig length identified by CHEER, VirHunter, Virtifier, RNN-VirSeeker, and LucaProt. The trainingmachines,

training datasets, training strategies, and final model selection of all methods compared are consistent with LucaProt. All comparisons utilized multiple sets of

hyperparameters with the best results selected in each case.
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Verification and confirmation of newly identified viral
supergroups
That the 180 viral supergroups identified here represented RNA

rather than DNA sequences was substantiated through multiple

lines of evidence. At the sequence level, two criteria were em-

ployed to establish a viral supergroup: the absence of similarity
to cellular proteins and the presence of key RdRP motifs

(Figures 4A and S4). Moreover, the majority (60/180) of the newly

identified supergroups, including those from LucaProt, shared

varying degrees of sequence similarity with existing reference

RdRPs (i.e., BLAST e-value % 1E�3 and/or had HMM model

score R 10; Figures 4A and S4; Table S4). To validate
Cell 187, 1–14, November 27, 2024 5
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Figure 4. Evaluation of authenticity of RNA viral supergroups

(A) Distribution of BLAST median e-value, HMM score, and mean AI modeling probabilities of RNA virus supergroups, with the conserved RdRP motif C of each

supergroup shown on the left. For each group selected, the top 20 to 30 supergroups are shown by size for clarity. The known viral supergroups defined by the

ICTV show high sensitivity for all three methods and are shaded in gray. The unclassified supergroups and new viruses discovered in this study show declining

homology but a relatively stable AI probability.

(B) The proportion of positive libraries and mean RPM (i.e., the number of mapped reads per million non-rRNA reads) of representative viral supergroups, DNA

viruses, RT, and cell organisms in 50 samples collected in this study. DNA libraries are shown in purple and RNA libraries in yellow, while the different groups of

RNA viruses and DNA organisms are shown in different colors, and red asterisks refer to those subsequently validated by RT-PCR.

(C) RT-PCR results of the first pairs of validation primers for representative RdRP sequences from 17 RNA viral supergroups, capsid sequences from two DNA

viral families (Podoviridae and Siphoviridae), and RT sequences.

(D) Three-dimensional (3D) structure similarity analysis of representative RdRPs from 180 viral supergroups with Eu DdRPs, Eu RdRPs, and RT. Each point

denotes a representative structure. The distance between different points represents structural similarity: the greater the distance, the lower the structural

similarity. Four RdRP domain structures of the AI-specific supergroups are displayed with the A, B, and C motifs highlighted. Representative RdRP domain

structures from all supergroups are available at https://doi.org/10.6084/m9.figshare.26298802.v14.

See also Figures S4 and S5.
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computational predictions, simultaneous DNA and RNA extrac-

tion and sequencing were performed on the 50 environmental

samples collected in this study to examine the presence of the

115 viral supergroups identified in these samples (Table S5).

This revealed that only RNA sequencing reads mapped to con-

tigs associated with viral RdRPs, whereas both RNA and DNA

sequencing reads mapped to contigs linked with DNA viruses,

RT, and cellular organisms (Figures 4B and S5). 17 of 115 viral
6 Cell 187, 1–14, November 27, 2024
supergroups were further confirmed by a more sensitive RT-

PCRapproach: this revealed an absence of sequences encoding

viral RdRP in the DNA extractions, suggesting that these viral su-

pergroups are bona fide RNA organisms (Figures 4C and S5B).

Finally, a three-dimensional (3D) alignment was used to compare

the newly identified viral RdRPs with known viral RdRPs, eukary-

otic RdRPs (Eu RdRPs), eukaryotic DNA-dependent RNA poly-

merases (Eu DdRPs), and RTs to determine their degree of

https://doi.org/10.6084/m9.figshare.26298802.v14
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Figure 5. Genomic features of viral supergroups

(A) Size (i.e., the number of putative viral species) of all viral supergroups. The number of supergroups included in each group is displayed above the violin chart.

Center lines in the boxplots represent the median bounds.

(B) Genome length of viral species in all viral supergroups. The number of viral species included in each group is displayed above the violin chart. Center lines in

the boxplots represent the median bounds.

(C) Histogram of the genome size distribution of viral species from known, unclassified, and new supergroups.

(legend continued on next page)
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structural similarity (Figure 4D). The new RdRP supergroups

from LucaProt contained at least three signature components

of viral RdRP structures that resulted in significantly higher struc-

tural similarity to known RNA virus proteins (average structure

similarity = 3.0) than their cellular counterparts (average structure

similarity = 5.8).

Genomic structures reveal modularity and flexibility
within the RNA virosphere
We next analyzed the composition and structure of the putative

RNA virus genomes identified in this study. The length of the

RdRP-encoding genomes or genome segments differed mark-

edly within and between viral supergroups, although most

were centered around 2,131 nucleotides (Figure 5). Notably,

however, our dataset also contained exceptionally long RNA vi-

rus genomes identified from soil that belonged to the Nido-like

supergroup. One of these genomes was 47.3 kb, making it one

of the longest RNA viruses identified to date37 (Figures 5C and

S6; Table S6). Interestingly, an additional open reading frame

(ORF) was identified between the 50 end of the genome of this vi-

rus and theORF encoding RdRP, although the function of the en-

coded protein is unclear due to a lack of sequence similarity to

known proteins. In addition to the RdRP, we characterized the

other predicted proteins encoded by the newly identified virus

genomes. While most had no homologs in existing databases,

we identified some that were related to structural (e.g., coat,

capsid, glycoprotein, and envelope proteins) and non-structural

(e.g., helicase, protease, methyltransferase, movement protein,

immune, or host-related regulatory proteins) proteins from

known viruses (Figure 5D). Importantly, the presence of these

additional virus proteins in newly identified supergroups pro-

vided further evidence that they were from bona fide RNA vi-

ruses. Furthermore, the presence of phage-related proteins

(i.e., phage coat, phage mat-A, and phage integrase) indicates

that some of the viruses likely infect prokaryotic hosts, although

further validation is required. In addition, the occurrence of these

proteins was incongruent with virus phylogenetic history as in-

ferred from RdRP sequences (Figure 5E), indicative of a

modular-like configuration of RNA virus genomes.

Expanded phylogenetic diversity of RNA viruses
Theexpansionof theRNAvirosphereat the level of virus species—

a 55.9-fold increase (251,846/4,502) from those defined by ICTV

and a 1.4-fold increase (251,846/181,388) from all previously

described RdRP sequences—is also evident in both the enlarge-

ment of known virus groups (e.g., phyla, orders, and families)

and the identification of entirely novel groups (Figure 6). Many of
(D) Distribution of annotated functional proteins in each viral supergroup. The su

(E) Genome structure of representatives from six known supergroups, 17 unclass

virus genomes of known supergroups. Domains not commonly found in RNA virus

the bottom, scale length in nucleotides. Abbreviations: GOLGA2L5, golgin subfa

bomodulin like fifth domain, EGF-like; Mg trans NIPA, magnesium transporter NIP

VI secretion system; Securin, securin sister-chromatid separation inhibitor; Rax

family; OmdA, bacteriocin-protection, YdeI, or OmpD-associated; Blt1 C, Get5 c

protein; SAM KSR, kinase suppressor RAS 1; CBD PlyG, PlyG cell wall binding

secretion system protein; PARP regulatory, poly-A polymerase regulatory sub

phosphatase family; PseudoU synth, RNA pseudouridylate synthase; Glyco hydr

See also Figure S6.
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the viruses discovered here formed clades that were distinct

from the lineages observed in previously described virus super-

groups (Figure 6). Interestingly, several groups previously repre-

sented by only a limited number of genomes—namely the Astro-

Poty, Hypo, Yan, and Cysto clades—experienced a major expan-

sion to encompass larger viral clusters with greater phylogenetic

diversity (Figure 6). Several newly identified supergroups also

had high levels of phylogenetic diversity, including SG023 (1,232

virus species), SG025 (466 virus species), and SG027 (475 virus

species), suggesting that more highly divergent RNA viruses will

be discovered in environmental samples. Following our analysis,

the supergroups with the greatest number of virus species here

were the Narna-Levi (58,063 virus species), Picorna-Calici

(19,970 virus species), and Tombus-Noda (15,520 virus species).

Ecological structure of the global RNA virome
Our analysis revealed the ubiquitous presence of RNA viruses

across diverse ecosystem subtypes (32 categories) and in

1,612 locations globally. Despite repeated efforts to uncover

the diversity of RNA viruses from such ecological sam-

ples,5–8,10,35 33.3% of viral groups detected by LucaProt were

not described previously (Figure 7A). Indeed, despite an overall

deceleration, the rate of RNA virus discovery has not reached

a plateau (Figure 7B), highlighting the vast untapped diversity

of the global RNA virosphere. This is especially evident in soil en-

vironments, where there has been a notable increase in virus

discovery.10

To help identify any ecological patterns, we compared alpha

diversity (measured by the Shannon index) and abundance

levels (measured by the number of reads per million total non-

rRNA reads, i.e., RPM) of the RNA virome among diverse

ecosystem subtypes (Figures 7C and 7D; Table S7). In general,

average alpha diversity was highest in leaf litter, wetland, fresh-

water, and wastewater environments, while virus abundance

reached its peak in Antarctic sediment, marine sediment, and

freshwater ecosystem subtypes, with average RPMs ranging

from 18,424.6 to 46,685.5 (Figure 7C). By contrast, the lowest

average diversity and abundance were in halite and subsurface

environments (Figure 7C), which was expected due to their low

biomass (i.e., host cells). For extreme ecological subtypes

such as hot springs and hydrothermal vents, the associated

RNA viruses were characterized by low diversity but moderate

abundance (1,528.9–3,726.9 average RPM; Figure 7C). It is

also noteworthy that the new viral supergroups established in

this study were predominantly found in aquatic and sediment

samples, with only a few occurrences in vertebrate and inverte-

brate animal samples (Figure 7C).
pergroups with no annotated genes other than RdRP are not shown.

ified supergroups, and eight new supergroups. Gray stars represent reference

es are shown in yellow and are labeled above their corresponding positions. At

mily A member 2-like protein 5; Pentaxin, pentaxin family; Tme5 EGF, throm-

A; NUDIX, nucleoside diphosphate-X hydrolase; RecX, RecX family; TssO, type

2, cortical protein marker for cell polarity; Abhydrolase, alpha/beta-hydrolase

arboxyl domain; DnaJ, DnaJ domain; trypan PARP, procyclic acidic repetitive

domain; LydB, LydA-holin antagonist; RelB, RelB antitoxin; T2SSE, type II/IV
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Figure 6. Phylogenetic diversity of 31 RNA viral supergroups

Each phylogenetic tree was estimated using a maximum likelihood method based on an amino acid alignment of the RdRP domain. Newly identified viruses are

marked in yellow, those listed as ‘‘Viruses’’ in the NCBI GenBank are marked in light blue, and viral RdRP sequences from six metagenomic studies5–8,10,35 are
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of the tree. All trees are midpoint-rooted for clarity only, and the scale bar indicates 0.5 aa substitutions per site. The tree files of all 180 supergroups are available
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Figure 7. Ecological structure of the global RNA virome

(A) Global distribution of RNA viral species identified in this study. The density-based spatial clustering of applications with noise (NBSCAN) clustering algorithm38

was used to cluster the 1,612 different latitude and longitude points from positive samples. Points with a distance <800 kmwere aggregated, and the resulting 70

aggregated points were used to draw the map. Viral species from known RNA virus supergroups are shown in gray, from unclassified supergroups in blue, and

from new supergroups in orange. Pie size reflects the number of viral species (log10).

(B) Rarefaction curve of all RNA viral species. Inset, rarefaction curve of RNA virus species at the ecosystem level with colors indicating different ecosystems.

(C) Distribution of sample size (numbers in the bar chart), alpha diversity, RPM, virus species from known supergroups, virus species from unclassified su-

pergroups, and virus species from new supergroups at different ecosystem subtypes and colored by their ecosystem. ‘‘Extreme ecosystem’’ here refers to high-

salinity, high-temperature, or low-temperature environmental types. Only ecosystem subtypes with more than nine libraries (excluded poly-A sequencing) were

retained for ecological comparison. The ecosystem subtypes on the y axis are ordered from the highest to the lowest alpha diversity for each ecosystem.

(D) Viral distributions in environmental andanimal samples. The relative abundanceof viruses in each librarywas calculated andnormalizedby the number ofmapped

reads per million no-rRNA reads. RNA virus species from 11 ecosystem subtypes are shown and placed into three groups, indicated by the colors on the heatmap.

See also Figure S7.
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Our results further revealed the prevalence and abundance

levels of particular viral groups across ecosystem subtypes (Fig-

ure 7D). Of note, the majority (85.9%) of the viruses discovered

here only occurred in a single ecosystem subtype. Others, how-

ever, may be ecological generalists. For example, members of

the Narna-Levi, Partiti-Picobirna, and Picorna supergroups as

well as Tombus-Noda supergroup were found in more than 32

ecosystem subtypes (Figure S7). Finally, we identified ‘‘marker’’

virus species that exhibited high prevalence and abundance

exclusively within specific ecosystem subtypes (Figure 7D),

consistent with previous reports.6,10 Among these, Partiti-Pico-

birna sp.1991 and Partiti-Picobirna sp. 5447 were associated

with hot springs, while Tombus-Noda sp. 2765 and Supergroup

026 sp. 2205 were associated with hydrothermal vents, suggest-

ing a likely relationship with specialized hosts adapted to these

environments.39,40 However, since the datasets analyzed here

were generated by different laboratories employing distinct sam-

ple processing, library preparation, and sequencing procedures,

the comparisons of viral diversity and abundance among

different ecosystem subtypes were necessarily subject to sys-

temic biases.

DISCUSSION

The accurate identification of highly divergent RNA viruses re-

mains a major challenge, impeding a comprehensive understand-

ing of the genetic diversity in the RNA virosphere and hindering

advancements in RNA virus evolution and ecology.16,41 Indeed,

the conventional approach for RNA virus discovery has heavily

relied on sequence similarity comparisons and the completeness

of sequence databases.41,42 To address these issues, we devel-

oped a data-driven deep learning model (i.e., LucaProt) that out-

performs conventional methods in accuracy, efficiency, and

most importantly, the breadth of virus diversity detected. Impor-

tantly, LucaProt not only incorporated sequence data but also in-

tegrated structural information, which is crucial for accurate pre-

diction of protein function, especially in the case of the RdRP.43

Without implementing the structural model, LucaProt had only

41.8% and 94.9% specificity and accuracy, respectively, on the

test dataset and could only detect 44.5% of the predicted RdRP

proteins. Hence, conservation of RdRP structure outweighs the

significance of RdRP sequences in the identification of highly

divergent RNA viruses. Collectively, we have established an AI

framework paradigm for large-scale RNA virus discovery that

can be readily extended to the accurate description of any biolog-

ical ‘‘dark matter’’ once the training dataset is prepared.

All the RNA viral sequences identified in this study were clas-

sified into clusters and supergroups, with the latter subsequently

compared with viral classes and phyla as defined by the

ICTV.44,45 Among the supergroups identified in this study, only

21 contained those from viral phyla/classes currently classified

by ICTV, such that there was an 8.6-fold expansion of RNA virus

diversity at the supergroup level compared with the latest ICTV

report,44 and a 1.5-fold expansion of all RNA viruses described

so far5–8,10,35 (Figure 1C). This expansion encompasses both ex-

isting viral supergroups as well as the discovery of 60 highly

divergent supergroups that have largely been overlooked in pre-

vious RNA virus discovery projects (Figure 1D). The virus super-
groups identified here were largely comparable to the existing

classification system at the phylum (e.g., phylum Lenarviricota

in the case of the Narna-Levi supergroup) or class (e.g., the Stel-

paviricetes, Alsuviricetes, and Flasuviricetes classes for the

Astro-Poty, Hepe-Virga, and Flavi supergroups) levels, high-

lighting the extent of the phylogenetic diversity identified here.

Despite the large expansion in RNA virus diversity documented

here, major gaps remain in our understanding of the evolution and

ecology of the newly discovered viruses. In particular, the hosts

for most of the viruses identified remain unknown. As the majority

of current known RNA viruses infect eukaryotes,46,47 andmicrobi-

al eukaryotes exist in great abundance and diversity in natural en-

vironments,48,49 it is possible that the viral clades and super-

groups identified here were largely associated with diverse

microbial eukaryotic hosts. However, it is also likely that a sub-

stantial proportion of the novel viruses discovered are associated

with bacterial (and perhaps archaeal) hosts.50–52 Indeed,

mounting evidence10,53 strongly supports the notion that more

groups of RNA viruses than currently documented are associated

with bacteria. The presence of RNA bacteriophage in multiple

RNA viral supergroups underlines the evolutionary connection be-

tween RNA viruses from bacterial and eukaryotic hosts. If viewed

through the lens of virus-host co-divergence,1,2,54 such a link sug-

gests that the evolutionary history of RNA viruses is at least as

long, if not longer, than that of the cellular organisms.
Limitations of the study
Our study has several limitations. First, classifying viruses on a

deep evolutionary scale remains a complex and challenging

task due to the very high levels of genetic divergence exhibited

by these viruses. This divergence is so pronounced that neither

sequence nor structural homology can adequately uncover their

true evolutionary histories. Second, while we successfully

confirmed the RNA nature of some virus supergroups through

RNA and DNA sequencing of the same sample, we could not

apply this method to other viral supergroups. This limitation arose

because these supergroups were identified using data from the

Sequence Read Archive (SRA) database that lack matching

DNA sequencing data. Finally, the viral genomes we identified

only contain segments associated with the RdRP. For segmented

viruses, this means we only uncovered partial genomes, with the

greater sequence divergence in non-RdRP segments hindering

their identification. Future efforts using more generalized models

could potentially identify all viral segments. AI models could be

expanded to detect viral functional proteins beyond RdRP,

enabling the identification of segments encoding highly divergent

viral proteins. Alternatively, as all viral genome segments must

have broadly matching levels of abundance (i.e., co-occur) as

the RdRP, the detection of sequences at similar abundance to

the RdRP could be used to identify additional segments, particu-

larly if this pattern of co-occurrence is found in multiple libraries.
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Materials availability

This study did not generate new unique reagents or specific biological mate-

rial. The materials used and generated in this study are available from the

lead contact. As a computational project, the input, results, output, and

code of this study are publicly available and are described below in the

‘‘data and code availability’’ section.

Data and code availability

The raw sequence reads newly generated in this study are available at the

NCBI SRA database under BioProject accessions PRJNA956286 and

PRJNA956287 (Table S2). All assembled contigs from this study are available

in the China National GeneBank DataBase (CNGBdb) under the accession

CNP0005901. The representative viral genome sequences generated are

available in the CNGBdb under the accession CNP0005901 (https://db.

cngb.org/search/project/CNP0005901/). Additionally, the related result data-

sets and LucaProt-related resources are publicly available at https://doi.org/

10.6084/m9.figshare.26298802.v14, including (1) the result datasets from

this study, including viral contigs, viral RdRP sequences, viral RdRPHMMpro-

files, and phylogenetic tree files; (2) the LucaProt code, the datasets for model

building, and the trained model of LucaProt; (3) the inference and prediction

code using the trained model for unknown sequences and benchmarks with

other methods; and (4) additional resources.

The original source code for ClstrSearch and LucaProt is stored at the

GitHub repository (ClstrSearch: https://github.com/alibaba/LucaProt/tree/

master/ClstrSearch; LucaProt: https://github.com/alibaba/LucaProt). We

also provide the Python dependency environment installation file, installation

commands, and the running command of the trained LucaProt model for infer-

ence or prediction, which can be found in the same GitHub repository. These

models are compatible with Linux, Mac OS, and Windows systems, support-

ing both CPU and GPU configurations for inference tasks.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China

(82341118 and 32270160), the Shenzhen Science and Technology Program

(KQTD20200820145822023 and JCYJ20210324124414040), the Natural Sci-

ence Foundation of Guangdong Province (2022A1515011854), the Guang-

dong Province ‘‘Pearl River Talent Plan’’ Innovation and Entrepreneurship

Team project (2019ZT08Y464), the Hong Kong Innovation and Technology

Fund (ITF) (MRP/071/20X), and the Health and Medical Research Fund

(COVID190206). E.C.H. is funded by a National Health and Medical Research

Council (Australia) Investigator grant (GNT2017197) and by AIR@InnoHK,

administered by the Innovation and Technology Commission, Hong KongSpe-

cial Administrative Region, China.We thank the Computing and Storage teams

of Alibaba Cloud Computing Co., Ltd. and Zhejiang laboratory for their contri-

bution of 15 machines with 128 CPUs and 1T RAM of Elastic High-

Performance Computing (EHPC), 64 Nvidia A100 Graphics Processing Units

(GPUs), and 500TB of Network Attached Storage (NAS) resources.

AUTHOR CONTRIBUTIONS

Conceptualization, X.H., Y.H., E.C.H., Z.-R.L., and M.S.; methodology, X.H.,

Y.H., J.-S.E., J.L., Z.-R.L., and M.S.; investigation, X.H., Y.H., P.F., S.-Q.M.,

Z.X., and Q.-Y.G.; writing – original draft, X.H., Y.H., E.C.H., andM.S.; writing –

review and editing, all authors; funding acquisition, F.-M.H., Y.-L.S., D.G.,

Z.-R.L., and M.S.; resources (sampling), X.H., S.-Q.M., W.-C.W., J.-H.T.,

G.-Y.X., S.-J.L., Y.-Y.X., Y.-L.Z., F.-M.H., Y.-F.P., Z.-H.Y., and C.H.; resources

(computational), S.Z., Z.-Y.Z., and Z.-R.L.; supervision, Z.-R.L. and M.S.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:
12 Cell 187, 1–14, November 27, 2024
d KEY RESOURCES TABLE

d METHOD DETAILS

B Samples and data sets

B Identification of RNA viruses based on deep learning

B Identification of RNA viruses based on homologous clustered

proteins

B Benchmarking LucaProt and comparisons to Diamond, HMMscan,

HH-suite and PalmScan

B Virus verification

B Structural prediction and comparisons between viral RdRPs and

homologous proteins

B Annotation and characterization of virus genomes

B Analyses of virome diversity, evolution and ecology

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2024.09.027.

Received: April 11, 2024

Revised: August 1, 2024

Accepted: September 16, 2024

Published: October 9, 2024

REFERENCES

1. Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Qin, X.C., Li, J.,

Cao, J.P., Eden, J.S., et al. (2016). Redefining the invertebrate RNA viro-

sphere. Nature 540, 539–543. https://doi.org/10.1038/nature20167.

2. Shi, M., Lin, X.D., Chen, X., Tian, J.H., Chen, L.J., Li, K., Wang, W., Eden,

J.S., Shen, J.J., Liu, L., et al. (2018). The evolutionary history of vertebrate

RNA viruses. Nature 556, 197–202. https://doi.org/10.1038/s41586-018-

0012-7.

3. Rivarez, M.P.S., Pecman, A., Ba�cnik, K., Maksimovi�c, O., Vu�curovi�c, A.,

Seljak, G., Mehle, N., Gutiérrez-Aguirre, I., Ravnikar, M., and Kutnjak, D.

(2023). In-depth study of tomato and weed viromes reveals undiscovered

plant virus diversity in an agroecosystem. Microbiome 11, 60. https://doi.

org/10.1186/s40168-023-01500-6.

4. Sutela, S., Forgia, M., Vainio, E.J., Chiapello, M., Daghino, S., Vallino, M.,

Martino, E., Girlanda, M., Perotto, S., and Turina, M. (2020). The virome

from a collection of endomycorrhizal fungi reveals new viral taxa with un-

precedented genome organization. Virus Evol. 6, veaa076. https://doi.org/

10.1093/ve/veaa076.

5. Wolf, Y.I., Silas, S., Wang, Y., Wu, S., Bocek, M., Kazlauskas, D., Krupovic,

M., Fire, A., Dolja, V.V., and Koonin, E.V. (2020). Doubling of the known set

of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Micro-

biol. 5, 1262–1270. https://doi.org/10.1038/s41564-020-0755-4.

6. Zayed, A.A., Wainaina, J.M., Dominguez-Huerta, G., Pelletier, E., Guo, J.,

Mohssen, M., Tian, F., Pratama, A.A., Bolduc, B., Zablocki, O., et al.

(2022). Cryptic and abundant marine viruses at the evolutionary origins

of Earth’s RNA virome. Science 376, 156–162. https://doi.org/10.1126/

science.abm5847.

7. Chen, Y.M., Sadiq, S., Tian, J.H., Chen, X., Lin, X.D., Shen, J.J., Chen, H.,

Hao, Z.Y., Wille, M., Zhou, Z.C., et al. (2022). RNA viromes from terrestrial

sites across China expand environmental viral diversity. Nat. Microbiol. 7,

1312–1323. https://doi.org/10.1038/s41564-022-01180-2.

8. Edgar, R.C., Taylor, B., Lin, V., Altman, T., Barbera, P., Meleshko, D., Lohr,

D., Novakovsky, G., Buchfink, B., Al-Shayeb, B., et al. (2022). Petabase-

scale sequence alignment catalyses viral discovery. Nature 602,

142–147. https://doi.org/10.1038/s41586-021-04332-2.

9. Obbard, D.J., Shi, M., Roberts, K.E., Longdon, B., and Dennis, A.B. (2020).

A new lineage of segmented RNA viruses infecting animals. Virus Evol. 6,

vez061. https://doi.org/10.1093/ve/vez061.

https://db.cngb.org/search/project/CNP0005901/
https://db.cngb.org/search/project/CNP0005901/
https://doi.org/10.6084/m9.figshare.26298802.v14
https://doi.org/10.6084/m9.figshare.26298802.v14
https://github.com/alibaba/LucaProt/tree/master/ClstrSearch
https://github.com/alibaba/LucaProt/tree/master/ClstrSearch
https://github.com/alibaba/LucaProt
https://doi.org/10.1016/j.cell.2024.09.027
https://doi.org/10.1016/j.cell.2024.09.027
https://doi.org/10.1038/nature20167
https://doi.org/10.1038/s41586-018-0012-7
https://doi.org/10.1038/s41586-018-0012-7
https://doi.org/10.1186/s40168-023-01500-6
https://doi.org/10.1186/s40168-023-01500-6
https://doi.org/10.1093/ve/veaa076
https://doi.org/10.1093/ve/veaa076
https://doi.org/10.1038/s41564-020-0755-4
https://doi.org/10.1126/science.abm5847
https://doi.org/10.1126/science.abm5847
https://doi.org/10.1038/s41564-022-01180-2
https://doi.org/10.1038/s41586-021-04332-2
https://doi.org/10.1093/ve/vez061


ll
OPEN ACCESS

Please cite this article in press as: Hou et al., Using artificial intelligence to document the hidden RNA virosphere, Cell (2024), https://doi.org/
10.1016/j.cell.2024.09.027

Article
10. Neri, U.,Wolf, Y.I., Roux, S., Camargo, A.P., Lee, B., Kazlauskas, D., Chen,

I.M., Ivanova, N., Zeigler Allen, L., Paez-Espino, D., et al. (2022). Expansion

of the global RNA virome reveals diverse clades of bacteriophages. Cell

185, 4023–4037.e18. https://doi.org/10.1016/j.cell.2022.08.023.

11. Urayama, S.I., Fukudome, A., Hirai, M., Okumura, T., Nishimura, Y., Ta-

kaki, Y., Kurosawa, N., Koonin, E.V., Krupovic, M., and Nunoura, T.

(2024). Double-stranded RNA sequencing reveals distinct riboviruses

associated with thermoacidophilic bacteria from hot springs in Japan.

Nat. Microbiol. 9, 514–523. https://doi.org/10.1038/s41564-023-01579-5.

12. Lee, B.D., Neri, U., Roux, S., Wolf, Y.I., Camargo, A.P., Krupovic, M., RNA

Virus Discovery Consortium, Simmonds, P., Kyrpides, N., Gophna, U.,

et al. (2023). Mining metatranscriptomes reveals a vast world of viroid-

like circular RNAs. Cell 186, 646–661.e4. https://doi.org/10.1016/j.cell.

2022.12.039.

13. Forgia, M., Navarro, B., Daghino, S., Cervera, A., Gisel, A., Perotto, S.,

Aghayeva, D.N., Akinyuwa, M.F., Gobbi, E., Zheludev, I.N., et al. (2023).

Hybrids of RNA viruses and viroid-like elements replicate in fungi. Nat.

Commun. 14, 2591. https://doi.org/10.1038/s41467-023-38301-2.

14. Zheludev, I.N., Edgar, R.C., Lopez-Galiano, M.J., de la Peña, M., Babaian,

A., Bhatt, A.S., and Fire, A.Z. (2024). Viroid-like colonists of human micro-

biomes. Preprint at bioRxiv. https://doi.org/10.1101/2024.01.20.576352.

15. Dominguez-Huerta, G., Wainaina, J.M., Zayed, A.A., Culley, A.I., Kuhn,

J.H., and Sullivan, M.B. (2023). The RNA virosphere: How big and diverse

is it? Environ. Microbiol. 25, 209–215. https://doi.org/10.1111/1462-

2920.16312.

16. Cobbin, J.C., Charon, J., Harvey, E., Holmes, E.C., andMahar, J.E. (2021).

Current challenges to virus discovery bymeta-transcriptomics. Curr. Opin.

Virol. 51, 48–55. https://doi.org/10.1016/j.coviro.2021.09.007.

17. McNutt, A.T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza,

M., Sunseri, J., and Koes, D.R. (2021). GNINA 1.0: molecular docking

with deep learning. J. Cheminform. 13, 43. https://doi.org/10.1186/

s13321-021-00522-2.

18. Pham, T.H., Qiu, Y., Zeng, J., Xie, L., and Zhang, P. (2021). A deep learning

framework for high-throughput mechanism-driven phenotype compound

screening and its application to COVID-19 drug repurposing. Nat. Mach.

Intell. 3, 247–257. https://doi.org/10.1038/s42256-020-00285-9.

19. Du, B.-X., Qin, Y., Jiang, Y.-F., Xu, Y., Yiu, S.-M., Yu, H., and Shi, J.-Y.

(2022). Compound-protein interaction prediction by deep learning: Data-

bases, descriptors and models. Drug Discov. Today 27, 1350–1366.

https://doi.org/10.1016/j.drudis.2022.02.023.

20. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,M., Ronneberger, O.,

Tunyasuvunakool, K., Bates, R., �Zı́dek, A., Potapenko, A., et al. (2021).

Highly accurate protein structure prediction with AlphaFold. Nature 596,

583–589. https://doi.org/10.1038/s41586-021-03819-2.

21. Gligorijevi�c, V., Renfrew, P.D., Kosciolek, T., Leman, J.K., Berenberg, D.,

Vatanen, T., Chandler, C., Taylor, B.C., Fisk, I.M., Vlamakis, H., et al.

(2021). Structure-based protein function prediction using graph convolu-

tional networks. Nat. Commun. 12, 3168. https://doi.org/10.1038/

s41467-021-23303-9.

22. Xu, L., Magar, R., and Barati Farimani, A. (2022). Forecasting COVID-19

new cases using deep learning methods. Comput. Biol. Med. 144,

105342. https://doi.org/10.1016/j.compbiomed.2022.105342.

23. Deng, L., and Yu, D. (2014). Deep Learning: Methods and Applications.

Found. Trends� in Signal Processing 7, 197–387. https://doi.org/10.

1561/2000000039.

24. Sarker, I.H. (2021). Deep Learning: A Comprehensive Overview on Tech-

niques, Taxonomy, Applications and Research Directions. SN Comput.

Sci. 2, 420. https://doi.org/10.1007/s42979-021-00815-1.

25. Shang, J., and Sun, Y. (2021). CHEER: HierarCHical taxonomic classifica-

tion for viral mEtagEnomic data via deep leaRning. Methods 189, 95–103.

https://doi.org/10.1016/j.ymeth.2020.05.018.

26. Sukhorukov, G., Khalili, M., Gascuel, O., Candresse, T., Marais-Colombel,

A., and Nikolski, M. (2022). VirHunter: A Deep Learning-Based Method for
Detection of Novel RNA Viruses in Plant Sequencing Data. Front. Bio-

inform. 2, 867111. https://doi.org/10.3389/fbinf.2022.867111.

27. Miao, Y., Liu, F., Hou, T., and Liu, Y. (2022). Virtifier: a deep learning-based

identifier for viral sequences frommetagenomes. Bioinformatics 38, 1216–

1222. https://doi.org/10.1093/bioinformatics/btab845.

28. Liu, F., Miao, Y., Liu, Y., and Hou, T. (2022). RNN-VirSeeker: A Deep

Learning Method for Identification of Short Viral Sequences FromMetage-

nomes. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 1840–1849.

https://doi.org/10.1109/TCBB.2020.3044575.

29. Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

https://doi.org/10.1109/5.726791.

30. Jordan, M.I. (1997). Serial Order: A Parallel Distributed Processing

Approach 121, 471–495.

31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, L., and Polosukhin, I. (2017). Attention Is All You Need. Ad-

vances in Neural Information Processing Systems.

32. Kabir, A., and Shehu, A. (2022). GOProFormer: A Multi-Modal Transformer

Method for Gene Ontology Protein Function Prediction. Biomolecules 12,

1709. https://doi.org/10.3390/biom12111709.

33. Cao, Y., and Shen, Y. (2021). TALE: Transformer-based protein function

Annotation with joint sequence–Label Embedding. Bioinformatics 37,

2825–2833. https://doi.org/10.1093/bioinformatics/btab198.

34. Nambiar, A., Heflin,M., Liu, S., Maslov, S., Hopkins, M., andRitz, A. (2020).

Transforming the Language of Life: Transformer Neural Networks for Pro-

tein Prediction Tasks. In Proceedings of the 11th ACM international con-

ference on bioinformatics, computational biology and health informatics,

pp. 1–8. https://doi.org/10.1145/3388440.3412467.

35. Olendraite, I., Brown, K., and Firth, A.E. (2023). Identification of RNA Virus-

Derived RdRp Sequences in Publicly Available Transcriptomic Data Sets.

Mol. Biol. Evol. 40, msad060. https://doi.org/10.1093/molbev/msad060.

36. Avsec, �Z., Agarwal, V., Visentin, D., Ledsam, J.R., Grabska-Barwinska, A.,

Taylor, K.R., Assael, Y., Jumper, J., Kohli, P., and Kelley, D.R. (2021).

Effective gene expression prediction from sequence by integrating long-

range interactions. Nat. Methods 18, 1196–1203. https://doi.org/10.

1038/s41592-021-01252-x.

37. Neuman, B.W., Smart, A., Vaas, J., Bartenschlager, R., Seitz, S., Gorbale-

nya, A.E., Caliskan, N., and Lauber, C. (2024). RNA genome expansion up

to 64 kb in nidoviruses is host constrained and associated with newmodes

of replicase expression. Preprint at bioRxiv. https://doi.org/10.1101/2024.

07.07.602380.

38. Liu, J.F., Qin, H., Liu, Z.Y., Wang, S., Zhang, Q., and He, Z.M. (2022). A

Density-Based Spatial Clustering of Application with Noise Algorithm

and its Empirical Research. Highlights Sci. Eng. Technol. 7, 174–179.

https://doi.org/10.54097/hset.v7i.1054.

39. Felipe Benites, L., Stephens, T.G., Van Etten, J., James, T., Christian,

W.C., Barry, K., Grigoriev, I.V., McDermott, T.R., and Bhattacharya, D.

(2024). Hot springs viruses at Yellowstone National Park have ancient or-

igins and are adapted to thermophilic hosts. Commun. Biol. 7, 312. https://

doi.org/10.1038/s42003-024-05931-1.

40. Thomas, E., Anderson, R.E., Li, V., Rogan, L.J., and Huber, J.A. (2021).

Diverse Viruses in Deep-Sea Hydrothermal Vent Fluids Have Restricted

Dispersal across Ocean Basins. mSystems 6, e0006821. https://doi.org/

10.1128/mSystems.00068-21.

41. Krishnamurthy, S.R., and Wang, D. (2017). Origins and challenges of viral

dark matter. Virus Res. 239, 136–142. https://doi.org/10.1016/j.virusres.

2017.02.002.

42. Chen, J., Guo, M., Wang, X., and Liu, B. (2018). A comprehensive review

and comparison of different computational methods for protein remote

homology detection. Brief. Bioinform. 19, 231–244. https://doi.org/10.

1093/bib/bbw108.
Cell 187, 1–14, November 27, 2024 13

https://doi.org/10.1016/j.cell.2022.08.023
https://doi.org/10.1038/s41564-023-01579-5
https://doi.org/10.1016/j.cell.2022.12.039
https://doi.org/10.1016/j.cell.2022.12.039
https://doi.org/10.1038/s41467-023-38301-2
https://doi.org/10.1101/2024.01.20.576352
https://doi.org/10.1111/1462-2920.16312
https://doi.org/10.1111/1462-2920.16312
https://doi.org/10.1016/j.coviro.2021.09.007
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1186/s13321-021-00522-2
https://doi.org/10.1038/s42256-020-00285-9
https://doi.org/10.1016/j.drudis.2022.02.023
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1016/j.compbiomed.2022.105342
https://doi.org/10.1561/2000000039
https://doi.org/10.1561/2000000039
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1016/j.ymeth.2020.05.018
https://doi.org/10.3389/fbinf.2022.867111
https://doi.org/10.1093/bioinformatics/btab845
https://doi.org/10.1109/TCBB.2020.3044575
https://doi.org/10.1109/5.726791
http://refhub.elsevier.com/S0092-8674(24)01085-7/sref30
http://refhub.elsevier.com/S0092-8674(24)01085-7/sref30
http://refhub.elsevier.com/S0092-8674(24)01085-7/sref31
http://refhub.elsevier.com/S0092-8674(24)01085-7/sref31
http://refhub.elsevier.com/S0092-8674(24)01085-7/sref31
https://doi.org/10.3390/biom12111709
https://doi.org/10.1093/bioinformatics/btab198
https://doi.org/10.1145/3388440.3412467
https://doi.org/10.1093/molbev/msad060
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1038/s41592-021-01252-x
https://doi.org/10.1101/2024.07.07.602380
https://doi.org/10.1101/2024.07.07.602380
https://doi.org/10.54097/hset.v7i.1054
https://doi.org/10.1038/s42003-024-05931-1
https://doi.org/10.1038/s42003-024-05931-1
https://doi.org/10.1128/mSystems.00068-21
https://doi.org/10.1128/mSystems.00068-21
https://doi.org/10.1016/j.virusres.2017.02.002
https://doi.org/10.1016/j.virusres.2017.02.002
https://doi.org/10.1093/bib/bbw108
https://doi.org/10.1093/bib/bbw108


ll
OPEN ACCESS

Please cite this article in press as: Hou et al., Using artificial intelligence to document the hidden RNA virosphere, Cell (2024), https://doi.org/
10.1016/j.cell.2024.09.027

Article
43. Mönttinen, H.A.M., Ravantti, J.J., and Poranen, M.M. (2021). Structure Un-

veils Relationships between RNA Virus Polymerases. Viruses 13, 313.

https://doi.org/10.3390/v13020313.

44. Wolf, Y.I., Kazlauskas, D., Iranzo, J., Lucı́a-Sanz, A., Kuhn, J.H., Krupovic,

M., Dolja, V.V., and Koonin, E.V. (2018). Origins and Evolution of the Global

RNA Virome. mBio 9, e02329-18. https://doi.org/10.1128/mBio.02329-18.

45. Koonin, E.V., Dolja, V.V., Krupovic, M., Varsani, A., Wolf, Y.I., Yutin, N.,

Zerbini, F.M., and Kuhn, J.H. (2020). Global Organization and Proposed

Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 84,

e00061-19. https://doi.org/10.1128/MMBR.00061-19.

46. Wu, R., Bottos, E.M., Danna, V.G., Stegen, J.C., Jansson, J.K., and Davi-

son, M.R. (2022). RNA Viruses Linked to Eukaryotic Hosts in Thawed

Permafrost. mSystems 7, e0058222. https://doi.org/10.1128/msystems.

00582-22.

47. Charon, J., Murray, S., and Holmes, E.C. (2021). Revealing RNA virus di-

versity and evolution in unicellular algae transcriptomes. Virus Evol. 7,

veab070. https://doi.org/10.1093/ve/veab070.

48. Ibarbalz, F.M., Henry, N., Brandão, M.C., Martini, S., Busseni, G., Byrne,

H., Coelho, L.P., Endo, H., Gasol, J.M., Gregory, A.C., et al. (2019). Global

Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 179,

1084–1097.e21. https://doi.org/10.1016/j.cell.2019.10.008.

49. Kalu, E.I., Reyes-Prieto, A., and Barbeau, M.A. (2023). Community dy-

namics of microbial eukaryotes in intertidal mudflats in the hypertidal

Bay of Fundy. ISME Commun. 3, 21. https://doi.org/10.1038/s43705-

023-00226-8.

50. Bollback, J.P., and Huelsenbeck, J.P. (2001). Phylogeny, genome

evolution, and host specificity of single-stranded RNA bacteriophage

(family Leviviridae). J. Mol. Evol. 52, 117–128. https://doi.org/10.1007/

s002390010140.

51. Poranen, M.M., andMäntynen, S.; Ictv Report Consortium (2017). ICTV Vi-

rus Taxonomy Profile: Cystoviridae. J. Gen. Virol. 98, 2423–2424. https://

doi.org/10.1099/jgv.0.000928.

52. Callanan, J., Stockdale, S.R., Shkoporov, A., Draper, L.A., Ross, R.P., and

Hill, C. (2018). RNA Phage Biology in a Metagenomic Era. Viruses 10, 386.

https://doi.org/10.3390/v10070386.

53. Gan, T., and Wang, D. (2023). Picobirnaviruses encode proteins that

are functional bacterial lysins. Proc. Natl. Acad. Sci. USA 120,

e2309647120. https://doi.org/10.1073/pnas.2309647120.

54. Sharp, P.M., and Simmonds, P. (2011). Evaluating the evidence for virus/

host co-evolution. Curr. Opin. Virol. 1, 436–441. https://doi.org/10.1016/j.

coviro.2011.10.018.

55. Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT:

an ultra-fast single-node solution for large and complex metagenomics

assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

https://doi.org/10.1093/bioinformatics/btv033.

56. Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R.,

Kabeli, O., Shmueli, Y., et al. (2023). Evolutionary-scale prediction of

atomic-level protein structure with a language model. Science 379,

1123–1130. https://doi.org/10.1126/science.ade2574.
14 Cell 187, 1–14, November 27, 2024
57. Sennrich, R., Birch, A., Currey, A., Germann, U., Haddow, B., Heafield, K.,

Barone, A.V.M., and Williams, P. (2017). The University of Edinburgh’s

Neural MT Systems for WMT17. In Proceedings of the Second Conference

on Machine Translation (Association for Computation Linguistics),

pp. 389–399.

58. Buchfink, B., Reuter, K., and Drost, H.-G. (2021). Sensitive protein align-

ments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368.

https://doi.org/10.1038/s41592-021-01101-x.

59. Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and

comparing large sets of protein or nucleotide sequences. Bioinformatics

22, 1658–1659.

60. Potter, S.C., Luciani, A., Eddy, S.R., Park, Y., Lopez, R., and Finn, R.D.

(2018). HMMER web server: 2018 update. Nucleic Acids Res. 46,

W200–W204. https://doi.org/10.1093/nar/gky448.

61. Katoh, K., and Standley, D.M. (2013). MAFFTmultiple sequence alignment

software version 7: improvements in performance and usability. Mol. Biol.

Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010.

62. Girvan,M., andNewman,M.E.J. (2002). Community structure in social and

biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826. https://

doi.org/10.1073/pnas.122653799.

63. Csárdi, G., and Nepusz, T. (2006). The igraph software package for com-

plex network research. InterJournal, Complex Systems 1695, 1–9.

64. Steinegger, M., Meier, M., Mirdita, M., Vöhringer, H., Haunsberger, S.J.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

RNeasy�PowerSoil� Total RNA Kit QIAGEN Cat. #12866-25

RNeasy� PowerSoil� DNA Elution Kit QIAGEN Cat. #12867-25

NEB Next Ultra RNA Library Prep Kit New England Biolabs Cat. #E7770

NEB Next Ultra DNA Library Prep Kit New England Biolabs Cat. #E7370L

Biological samples

Samples are described in Table S2 This paper N/A

Deposited data

Raw sequencing reads generated in this study This paper NCBI-SRA BioProject: PRJNA956286 (RNA-seq) and

PRJNA956287 (DNA-seq)

All assembled contigs used in this study This paper https://ftp.cngb.org/pub/CNSA/data4/CNP0005901/

CNS1149693/CNA0141908/

Representative viral genome sequences This paper https://db.cngb.org/search/project/CNP0005901/

All original data and code produced in this work This paper https://doi.org/10.6084/m9.figshare.26298802.v14

Original code produced in this study This paper https://github.com/alibaba/LucaProt

Software and algorithms

MEGAHIT v1.2.8 Li et al.55 https://github.com/voutcn/megahit

ORFfinder v0.4.3 NCBI Team https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/ORFfinder/

linux-i64/

ESMFold Lin et al.56 https://github.com/facebookresearch/esm

Subword-NMT v0.3.8 Sennrich et al.57 https://github.com/rsennrich/subword-nmt

Diamond v0.9.25.26 Buchfink et al.58 https://github.com/bbuchfink/diamond

CD-HIT v4.8.1 Li and Godzik59 https://github.com/weizhongli/cdhit

HMMER Potter et al.60 http://hmmer.org/

Mafft v7.475 Katoh et al.61 https://mafft.cbrc.jp/alignment/software/

Girvan-Newman algorithm Girvan et al.62 https://memgraph.github.io/networkx-guide/algorithms/

community-detection/girvan-newman/

iGraph package v1.3.5 Csárdi et al.63 https://igraph.org

HH-suite v3.3.0 Steinegger et al.64 https://github.com/soedinglab/hh-suite

PalmScan Babaian et al.65 https://github.com/rcedgar/palmscan

Bowtie2 v2.4.2 Langmead et al.66 https://bowtie-bio.sourceforge.net/bowtie2/index.shtml

AlphaFold2 v2.3 Jumper et al.20 https://alphafold.com/

PyMol v2.5.4 Rosignoli and Paiardini67 http://www.pymol.org/pymol

NetworkX Hasan et al.68 https://networkx.org/

PhyML v3.1 Guindon et al.69 http://www.atgc-montpellier.fr/phyml/
METHOD DETAILS

Samples and data sets
This study comprised RNA virus discovery through the metatranscriptomic analysis of 10,487 samples. The majority of these sam-

ples (n=10,437) were mined from the NCBI Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) between

January 16 - August 14, 2020. We targeted samples collected from awide range of environmental types globally (Figure 2), including:

aquatic (such as marine, riverine and lake water), soil (such as sediment, sludge and wetland), host-related (such as biofilm, wood

decay, and rhizosphere), and extreme environmental samples (such as hydrothermal vent, hypersaline lake and salt marsh), that

were subject to high quality metatranscriptomic sequencing to ensure the generation of R50 Mb total RNA Q20 sequencing data.

In addition, 50 data sets were generated in this study (see below), all of which were subject to high-quality short-read sequencing
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utilizing Illumina sequencing platforms. The raw sequencing data output ranged from 35.1 to 204.1 Gbp, and no enrichment for mi-

crobial organisms was performed during sample processing or library preparations. For highly abundant environmental types, such

as ‘‘soil’’ and ‘‘marine’’, representative samples were selected to include as many projects (i.e., independent studies), geographic

locations and ecological niches as possible.

In addition to data mined from the SRA database, we generated 50 metatranscriptomic data sets from Antarctica and China. The

sample types included marine (n=5), freshwater (n=12), soil (n=19), and sediment (n=14), of which nine sediment samples were

collected at the Ross Sea station in Antarctica between January and February 2022, with the others from Zhejiang, Guangdong, Hu-

bei andHeilongjiang provinces of China collected between August andOctober 2022. For each of these samples, DNA andRNAwere

simultaneously extracted: the soil and sediment samples were extracted using the RNeasy� PowerSoil� Total RNA Kit and

RNeasy� PowerSoil� DNA Elution Kit (QIAGEN, Germany), while the marine and freshwater samples were extracted using the

DNeasy� PowerWater� Kit and RNeasy� PowerWater� Kit (QIAGEN, Germany). The extracted nucleic acid was then subject to

library construction using the NEB Next Ultra RNA Library Prep Kit and NEB Next Ultra DNA Library Prep Kit (New England Biolabs,

China) for RNA and DNA samples, respectively. Paired-end (150 bp) sequencing of these libraries was performed using the Illumina

NovaSeq 6000 platform (Illumina, USA).

For all 10,487 data sets used this study, sequence reads were de novo assembled into contigs using MEGAHIT v1.2.855 with

default parameters, without implementing any quality control procedures to optimize time efficiency. Potential encoded proteins

were predicted from contigs using ORFfinder v0.4.3 (https://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/ORFfinder/linux-i64/; parame-

ters, -g 1, -s 2).

Identification of RNA viruses based on deep learning
We developed a new deep learning, transformer-based model, termed ‘‘Deep Sequential and Structural Information Fusion Network

for Protein Function Prediction’’ (i.e., LucaProt), that effectively integrated protein sequence composition and structure information to

identify viral RdRPs. The model contains two channels. The first channel employs a Transformer-Encoder for feature extraction from

the raw sequence data. We used the Byte-Pair Encoding (BPE) algorithm70 for tokenization, enabling the model to handle longer se-

quences and identify meaningful units (such as words, rather than individual residues) within sequences associated with RdRPs. The

BPE algorithm creates a word-level vocabulary from a sequence corpus and tokenizes the input sequence accordingly, prior to

feature extraction via the Transformer-Encoder. The second channel leverages the protein language model ESM2-3B56 to capture

residue-level features, utilizing the model’s self-supervised learning capabilities to decode contextual structural information. The

model concludes with two Value-Level Attention Pooling layers that down-sample each feature matrix into a vector. These two vec-

tors are then concatenated for the final classification task. The model includes five modules: Input, Tokenizer, Encoder, Pooling, and

Output (Figure S1E).

Input Layer

This layer accepts amino acid sequences as the model’s input.

Tokenizer Layer

This layer processes raw sequence data into a digestible format for feature extraction. Thismodule comprises two components. First,

a corpus comprising 5,979 positive sequences (i.e., viral RdRPs) and 150,000 sequences sampling from negative samples (i.e., pro-

tein sequences that are not viral RdRPs) was constructed. The BPE algorithm70 from the Subword-NMT tool (https://github.com/

rsennrich/subword-nmt) was utilized to create a vocabulary of about 20,000 frequent subsequences or "words". These words

were derived by treating co-occurring amino acids in the sequences as single entities. Additionally, each protein sequence was

broken down into individual amino acids for subsequent extraction of protein structural information using a large protein lan-

guage model.

Encoder Layer

This layer transforms the data into two representations by different tokenization strategies (as illustrated in the former layer): a

sequence representationmatrix with word-level tokenization and a structural representation matrix with character-level tokenization.

For sequence processing, an advanced Transformer-Encoder model was utilized to generate the sequence representation matrix. In

terms of structural processing, the intermediate matrices produced by the structural prediction model ESMFold (ESM2-3B)56 were

used as the structural representation matrix. This methodology addresses the limitation posed by the scarcity of experimentally

observed 3D structures and obviates the need for additional encoding steps, thereby guaranteeing computational efficiency.

Pooling Layer

This layer reduces dimension and selects features for efficient classification. It employs a Value-Level Attention Pooling (VLAP)

approach71 to convert the sequence and structural matrices into two vectors.

Output Layer

This layer transforms the pooled vectors into the probability value indicative of a positive sample. The vectors from the pooling layer

are concatenated and passed through a fully connected layer. A sigmoid function outputs probability values ranging from 0.0 to 1.0,

with a threshold of 0.5 to classify sequences as viral RdRP or not (Figure S2).

Model Building

Weconstructed a data set of 235,413 samples formodel building. This included 5,979 positive samples of known viral RdRPs (i.e., the

well-curated RdRP database described below) and 229,434 randomly selected negative samples of confirmed protein sequences
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that were not viral RdRPs (as the positive samples account for a very small portion of the total data, we constructed the training data

set using the conventional 1:40 ratio of positive to negative data). The representative negative samples contained proteins from eu-

karyotic RNA-dependent RNA polymerase (Eu RdRP, n=2,233), eukaryotic DNA-dependent RNA polymerase (Eu DdRP, n=1,184),

reverse transcriptase (RT, n=48,490), proteins obtained from DNA viruses (n=1,533), non-RdRP proteins obtained from RNA viruses

(n=1,574), as well as an array of cellular proteins from different functional categories (n=174,420). We randomly divided the data set

into training, validation, and testing sets with a ratio of 8.5:1:1, whichwere used formodel fitting, model finalization (based on the best

F1-score training iteration), and performance reporting (including accuracy, precision, recall, F1-score, and Area under the ROC

Curve (AUC)), respectively (Figure S2).

We further validated the performance and robustness of LucaProt model by implementing a 10-fold cross-validation (Figure S2).

During this process, both positive and negative samples were randomly shuffled and divided into ten equal parts, with each part

comprising 540 positive and 21,744 negative samples. For the cross-validation, two parts were sequentially selected as the validation

and testing sets, respectively, while the remaining samples were merged to form the training set.

LucaProt successfully identified 792,436 putative RdRP signatures froma data set of 144.6million proteins derived from the 10,487

metatranscriptomes. These results were first compared with the RdRPs identified based on ClstrSearch (see below). RdRPs that

were identified by deep learning algorithms (i.e., LucaProt) were either incorporated into RNA virus supergroups using the Diamond

blastp program v0.9.25.12658 with an e-value threshold of 1E-3, or, if they remained unclassified, were subjected to clustering, merg-

ing, and manual alignment inspection. The presence of key viral RdRP motifs – motif A [DxxxxD], motif B [(S/T)Gxxx(T/G)xxxN], and

motif C [(S/G/N/A)D(D/N)] – were examined for all supergroups through multiple sequence alignments.

Identification of RNA viruses based on homologous clustered proteins
Another strategy for the identification of RNA viruses at the cluster level involved the utilization of homologous clustered proteins (Fig-

ure S1A). Accordingly, a total of 871.8 million amino acid sequences predicted by ORFfinder (see Samples and data sets) were

compared against a well-curated RdRP database (n=5,979) that contained only those derived from reference RNA virus genomes

downloaded from the NCBI GenBank database and their close relatives in vertebrate and invertebrate hosts.1,2 The comparisons

were performed using the Diamond blastp program v0.9.25.126,58 with the e-value threshold set at 1E+5 to identify more divergent

RdRP sequences (Figures S1A and S2H). This process resulted in 75.3million hits that were further subjected to similarity-based and

multi-step clustering (three iterations with 90%, 60%, and 20% amino acid identity, respectively) using CD-HIT v4.8.1 (https://github.

com/weizhongli/cdhit); this process resulted in 3,805,584 clusters. False positives and hits to knownRdRP sequences were removed

by comparison against the NCBI non-redundant (nr) protein database (version 2023.01.09), the NCBI RefSeq protein database

(version 2023.03.26) and the virus RdRP database using the Diamond blastp program v0.9.25.12658 with an e-value threshold of

1E-3 (Figure S1B). The remaining unknown protein clusters were subject to viral RdRP domain search using hidden Markov models

(HMMs) built from a manually reviewed profile of known RdRP clusters using HMMscan v3.3.2 (e=10, hitsR1).60 The RdRP se-

quences of each known viral group were aligned using Mafft v7.475,61 employing the L-INS-I algorithm. HMMprofiles were then built

from each MSA using HMMbuild v3.3.2 with standard parameters.60 Clusters that contained more than one HMMscan hit were sub-

sequently aligned and inspected for the presence of well-conserved RdRP core sequences referred to as the ‘‘palmprint’’, delineated

by the presence of the threemotifs (A, B andC) that collectively constitute the catalytic core within the RdRP structure.65 As a result of

our rigorous screening and checking steps, a total of 713 potential RdRP clusters were retained.

To further expand the RdRP collection based on the viruses newly discovered here, we updated the RdRP protein database with

the 713 RdRP clusters newly identified here and used it to detect additional RdRP sequences from the original 144.6 million amino

acid sequences using Diamond blastp v0.9.25.12658 with an e-value threshold of 1E-3. The newly detected RdRPs were again incor-

porated into the RdRP database for another round of virus detection. This procedure was repeated ten times. The resulting hits

(21,747,015 in total) were compared to the similarity-based clusters for the removal of false positives and virus classification. The

false positives and non-RdRP viral proteins that did not contain a RdRP domain were removed by a HMMs-based search using

an updated HMMs profile derived from each RdRP cluster and built as described above. The cut-off was set to scoreR40 and

the aligned fraction to R0.4 to remove false positives and partial virus RdRPs (Figures S1C and S2I).

Finally, the expanded clusters were merged into virus supergroups using a hierarchical method employing the Girvan-Newman

algorithm,62 with the edge betweenness determined based on median e-value threshold of 1E-3 for each pair of clusters

(Figures S1D,S2J, and S2K). Briefly, the merging of clusters employed the following steps: (i) the betweenness of all edges (median

e-value between clusters) in the network was calculated; (ii) the edge(s) with the highest betweenness were removed; (iii) the

betweenness of all edges affected by the removal was recalculated; (iv) steps ii and iii were repeated until no edges remained. All

processes related to merging were performed using igraph package v1.3.563 implemented in R.

Benchmarking LucaProt and comparisons to Diamond, HMMscan, HH-suite and PalmScan
We assessed the performance of LucaProt (probR0.5) relative to other four virus discovery tools: Diamond v0.9.25.12658 (with

e-value threshold of 1E-3), HMMscan v3.3.260 (with scoreR30 and aligned fractionR0.7 as referenced from Zayed et al.,6), HH-suite

v3.3.064 (with default parameters), and PalmScan65 (with default parameters). This comparison included recall, precision, false pos-

itive and false discovery based on the 2.05 million amino acid sequences (lengthR300aa) from contigs assembled from the 50 sam-

ples collected in this study, employing a unified criterion and utilizing the same well-curated RdRP database (n=5,979).
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True positive (TP) virus hits were determined by simultaneously identifying the true viral RdRPs using both aforementioned tools

(i.e., LucaProt, Diamond, HMMscan, HH-suite and PalmScan), and subsequently confirming through comparison against the nr pro-

tein database (version 2023.01.09) using the Diamond blastp program v0.9.25.12658 with an e-value threshold of 1E-3. True negative

(TN) hits were defined as the subset of sequences recognized as cellular proteins and/or with reads from DNA sequencing results

mapping against the corresponding contigs, among a data set comprising 2.05million sequences. A data set of 1,029,342 true nega-

tive sequences was obtained through both approaches. Recall was calculated as the ratio of correctly predicted true positives to the

total number of true positives (recall rate=TP*100%/total TP). Precision was calculated as the proportion of all predictions that were

correctly predicted as true positives (precision rate=TP*100%/total predictions). The false positive (FP) rate was calculated as the

proportion of all true negatives that were incorrectly predicted as positives (false positive rate=FP*100%/total TN). False discovery

(FD) was calculated as the proportion of all predictions that were incorrectly predicted as positives (false discovery rate=FP*100%/

total predictions).

To compare the computational time required by LucaProt to that of HH-suit, Diamond, HMMscan, and PalmScan, we categorized

the test data sets into six groups based on amino acid sequence length: (300, 500), (500, 800), (800, 1,000), (1,000, 3,000), (3,000,

5,000), and >5,000. Each group comprised 50 randomly sampled viral RdRPs and 50 non-viral sequences. A single sequence

was used as input to calculate the average time on the same machine of the Alibaba Cloud Elastic Compute Service (ECS). The

CPU execution environment comprised 96 cores (vCPU) and 192 GiB memory (instance type: ecs.c8i.24xlarge). For LucaProt, we

also recorded the time spent on a single NVIDIA A100 80G GPU (instance type: ecs.gn7e-c16g1.16xlarge).

All scripts of the tools used, containing exact parameters and the database utilized in the benchmarking, are available at https://

doi.org/10.6084/m9.figshare.26298802.v14.

Virus verification
To determine whether the newly discovered viral RdRPs belonged to RNA viruses rather than organisms with DNA genomes we per-

formed three verification experiments. First, the RdRPs were compared against the NCBI nr protein database (version 2023.01.09)

using Diamond blastp v0.9.25.126,58 with the e-value threshold set to 1E-3. Proteins with similarity to cellular proteins were removed.

In addition, we confirmed the presence of the key RdRPmotifs (i.e., the A, B and Cmotifs) through alignment to all RNA supergroups

that possessed thesemotifs (i.e. motif A [DxxxxD], motif B [(S/T)Gxxx(T/G)xxxN], motif C [(S/G/N)DD]). Sequences that failed to cover

these motifs were removed.

Second, to ensure the accuracy of DNA readmapping, an initial quality control step was performed on viral contigs using bbduk.sh

(https://sourceforge.net/projects/bbmap/). As well as the simultaneous RNA and DNA extraction and sequencing of the 50 environ-

mental samples collected in this study, we searched for published RNA studies that performed both RNA andDNA sequencing on the

samples. To confirm that the detected contigs represented bona fide RNA viral genomes, reads from the DNA sequencing data were

mapped against the viral contigs using Bowtie2 v2.4.266 with the ‘‘end-to-end’’ setting.

Finally, RT-PCR assays were conducted to validate the presence of RNA organisms within the viral supergroups identified. Two

pairs of validation primers were designed for each of the representative RdRP sequences from 17 of the 115 RNA viral supergroups

involved in 50 samples collected in this study. These comprised: (i) two known supergroups defined by the ICTV: Astro-Poty, Bunya-

Arena; (ii) ten unclassified supergroups derived from this study and other studies: Supergroup022, Supergroup034, Supergroup038,

Supergroup053, Supergroup055, Supergroup063, Supergroup086, Supergroup104, Supergroup124, Supergroup180; and (iii) five

new supergroups identified here: Supergroup102, Supergroup167, Supergroup175, Supergroup184, Supergroup187. We also

included gene sequences from two DNA virus families (the Podoviridae and Siphoviridae), and RT sequences identified in this study,

with a product length of 300–550 bp. For each of these samples, both the reverse-transcribed RNA and thematching DNA underwent

simultaneous PCR amplification, and the amplification products were subject to electrophoresis using a 1% agarose gel with GelRed

dye, which was subsequently visualized under UV.

Structural prediction and comparisons between viral RdRPs and homologous proteins
Three-dimensional structures of newly identified viral RdRPs from diverse RNA viral supergroups were predicted from primary se-

quences using AlphaFold2 v2.320 and visualized using the PyMol software v2.5.4 (http://www.pymol.org/pymol). The pLDDT (pre-

dicted local distance difference test) score was measured for each structure prediction as its per-residue estimate of the prediction

confidence on a scale from 0-100. Considering the computational resource limitations with such a large data set, ten representative

RdRPs from each supergroup were predicted: more than 52.03% of the structures predicted had >70% accuracy, showing that

AlphaFold2 was a relatively reliable source of structural information. The previously resolved or predicted structures of viral

RdRPs, eukaryotic RdRPs, eukaryotic DdRPs and RTs were compared using the Super algorithm.72 Considering that the protein

structures have similar molecular weights but substantial conformational variation, the ‘‘number of aligned atoms after refinement’’

option was employed to evaluate the similarity between each pair of proteins. Subsequently, NetworkX (https://networkx.org/) was

employed to construct a three-dimensional structure diagram using the "edge-weighted spring embedded" approach, with results

then mapped as a scatter plot (depicted in the Figure 4D). Simultaneously, we visualized four viral RdRP domain proteins us-

ing PyMol.
e4 Cell 187, 1–14.e1–e5, November 27, 2024

https://doi.org/10.6084/m9.figshare.26298802.v14
https://doi.org/10.6084/m9.figshare.26298802.v14
https://sourceforge.net/projects/bbmap/
http://www.pymol.org/pymol
https://networkx.org/


ll
OPEN ACCESS

Please cite this article in press as: Hou et al., Using artificial intelligence to document the hidden RNA virosphere, Cell (2024), https://doi.org/
10.1016/j.cell.2024.09.027

Article
Annotation and characterization of virus genomes
Potential open reading frames (ORFs) of every virus genome were predicted based on two criteria: (i) the predicted amino acid se-

quences were longer than 200 amino acids in length, and (ii) they were not completely nested within larger ORFs. The annotation of

non-RdRPORFs wasmainly based on comparisons of predicted proteins to hiddenMarkovmodels (HMMs) collected from the Pfam

database (version 2022.03.23, https://pfam-legacy.xfam.org/) using HMMscan v3.3.2 implemented in HMMER (e=10, scoreR10).60

For the remaining ORFs, the annotation was performed by blastp comparisons against the nr protein database with an e-value

threshold of 1E-3.

Analyses of virome diversity, evolution and ecology
To unveil the diversity of the RNA viruses identified and establish putative novel viral species, we employed a protein sequence iden-

tity threshold of 90%and aminimum aligned fraction of 30% for all viral RdRP domains identified in this study as implemented by CD-

HIT v4.8.1 (https://github.com/weizhongli/cdhit). Abundance levels were subsequently estimated for every putative virus species

based on the number of non-rRNA reads per million (RPM) in each sample (i.e., sequencing run) mapped to the RdRP sequences

of all viral species using Bowtie2 v2.4.266 with the ‘‘end-to-end’’ setting. The abundance of each putative virus species was estimated

as the number of mapped reads per million total non-rRNA reads (RPM) in each library.

Virus alpha diversity (measured using the Shannon index) and overall abundance were subsequently estimated and compared

across different geographic locations and ecosystem subtypes, namely; soil, marine, freshwater, wetland, hot spring, salt marsh,

and other subtypes. ‘‘Marker virus species’’, that were greatly enriched in certain ecosystem subtypes, were also identified based

on the virus mapping results. The marker virus species were defined as those present only in one ecosystem subtype with

RPMR1 and coverage (percentage of horizontal covered bases with depthR1) set at R20%.

To reveal the diversity and evolutionary relationships of RNA viruses within individual virus supergroups, all previously documented

RNA viruses were incorporated into phylogenetic analyses, including RefSeq RdRPs sequences as well as those from previous

studies. For supergroups containing more than 500 RdRPs, similarity-based clustering using CD-HIT v4.8.1 (https://github.com/

weizhongli/cdhit) with a threshold of identity=0.6 was employed to select representative RdRPs to ensure phylogenetic diversity,

while for those containing fewer than 500 RdRPs, all sequences were used in the phylogenetic analysis. The RdRPs of each super-

group were aligned using the L-INS-I algorithm implemented in Mafft v7.475.61 Phylogenetic analyses were performed based on the

sequence alignment using a maximum likelihood algorithm, employing the LG model of amino acid substitution, a Subtree Pruning

and Regrafting (SPR) branch swapping algorithm, and a Shimodaira–Hasegawa-like procedure as implemented in the PhyML pro-

gram v3.1.69

QUANTIFICATION AND STATISTICAL ANALYSIS

All computational and statistical analyses were performed with the open-source software tools referenced in the STAR Methods

along with the described procedures.
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Figure S1. Detailed RNA virus discovery pipeline, related to Figure 1

(A) Schematic diagram of the similarity-based discovery (i.e., ClstrSearch) and RdRP AI modeling (i.e., LucaProt) approaches.

(B) Protein clustering process. Only clusters with more than ten members are retained for viral cluster discovery.

(C) Ten iterations of RdRP expansion by recruiting newly detected RdRPs.

(D) RdRP clusters are merged into RdRP supergroups using BLAST median e-values.

(E) RdRP identification by LucaProt that includes five modules: input, tokenizer, encoder, pooling, and output.
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Figure S2. Benchmarking of LucaProt for the RdRP modeling and threshold used in ClstrSearch, related to Figure 1

(A) The Sigmoid function of the LucaProt. The Sigmoid function (i.e., the logistic function) is used for the output layer of a binary classification model and for

mapping a real number to the probability of 0–1.

(B) Statistics of the dataset used for LucaProt building, including the entire dataset, training set, validation set, and testing set.

(C) The confusion matrix on the validation dataset.

(D) The confusion matrix on the testing dataset.

(E) The metrics for the validation and testing datasets.

(F and G) The metrics on the validation and testing sets of 10-fold cross-validation for LucaProt. The positive and negative samples were randomly shuffled and

divided into ten parts, with each part containing 540 positive and 21,744 negative samples. In the 10-fold cross-validation, two parts were selected rotationally to

serve as the validation and testing sets, respectively, while the remaining samples were combined to form the training set.

(H) Number of hits with Diamond BLASTp v0.9.25.126 using different e-values at the test stage. A total of 15,000 sequences were randomly sampled for the test,

and host hits were recognized by comparison against the NCBI non-redundant (nr) protein database (version 2023.01.09) with an e-value threshold of 1E�3.

(I) Benchmarking of HMMscan bitscore and aligned fraction using the RdRP and non-RdRPdatasets (including RT, EuDdRP, and EdRdRPderived from the NCBI

GenBank database).

(J) BLAST Median e-value within the same known RdRP cluster.

(K) BLAST Median e-value between pairwise comparisons of known RdRP clusters, with a 1E�3 cut-off used for cluster merging.
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Figure S3. Comparison of RNA virus discovery results between six previous studies and this study, related to Figure 1

(A) The distribution of putative viral species of seven studies at the supergroup level and the study-specific level.

(B) Upset plot showing the number of viral species found in each study and those that are shared/unique between and among seven studies. The red bar in the top

histogram represents unique viral species identified in each study, while the green bar indicates viral species that are shared between two or more studies. The

rightmost histogram shows the number of metatranscriptomes analyzed in each study. Of note, Olendraite et al.35 sourced viral RdRPs from the NCBI tran-

scriptome shotgun assembly (TSA) database, such that the exact number of metatranscriptomes analyzed is unclear.
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(legend on next page)
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Figure S4. The three highly conserved RdRP sequence motifs (A, B, and C) and the distribution of BLAST median e-value, HMM score, and

mean AI modeling probabilities of the RNA virus supergroups, related to Figure 4

RNA viral supergroupswere divided into three groups by similarity to reference and other published datasets, with the conserved RdRP A, B, and Cmotifs of each

supergroup shown on the left.
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Figure S5. Expression difference of RNA viruses and DNA organisms in our newly sequenced data, related to Figure 4

(A) Abundance comparisons for 58 RNA viral supergroups, four DNA virus families, RT, and cell organisms at DNA and RNA libraries.

(B) RT-PCR results of second pairs of validation primers for representative RdRP sequences from 17 RNA viral supergroups, capsid sequences from two DNA

virus families (Podoviridae and Siphoviridae), and RT sequences.
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Figure S6. Phylogenetic tree of the Nido-like supergroup and the genome structure of representative viruses, related to Figure 5

The tree was estimated using a maximum likelihood method based on the conserved RdRP domain. The reference sequences reported previously are shaded

gray, while the viruses newly identified here are shaded by different colors according to ecotype. The names of viral families are shown on the right of the tree. The

tree was midpoint-rooted for clarity only, and the scale bar of the tree indicates 0.2 aa substitutions per site. The genome structures of representative viruses are

shown on the right of the tree. The scale bar at the bottom indicates the length in nucleotides.
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Figure S7. Specificity and shareability of RNA viruses, related to Figure 7

(A) Number of specific putative viral species (i.e., putative ‘‘marker’’ viral species) in each ecosystem subtype.

(B) Association between RNA viruses and different environmental ecosystems. The size of the colored circles indicates the number of putative viral species

identified by each ecosystem type, while the thickness of the line indicates the number of viral species shared by each ecosystem.
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